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A B S T R A C T  

                          Swarm robotics has emerged as a promising field for addressing complex real-world challenges 

by enabling coordinated behavior among multiple autonomous robots. In search and rescue 

operations, traditional methods often face limited scalability, inefficient exploration, and a lack of 

adaptability to dynamic and unpredictable environments. Rule-based and heuristic approaches 

frequently struggle with real-time decision-making and coordination in large, multi-agent 

systems. To overcome these limitations, this paper proposes a method DQLSRO integrates Deep 

Q-Learning (DQL) into swarm robotics optimization (SRO) for cooperative search and rescue 

missions (SRM) to develop an adaptive, decentralized framework where robots learn optimal 

policies. Each robot utilizes a Deep Q-Network to learn and adapt its actions autonomously. 

Communication among robots enables information sharing, allowing dynamic policy updates and 

coordinated decision-making. The framework incorporates multi-agent reward functions to 

maximize coverage, minimize time to locate victims and avoid obstacles. Experimental results 

demonstrate that the DQL-based swarm outperforms traditional methods, achieving a 30% 

reduction in mission completion time and a 25% increase in victim detection rate. The DQLSRO 

also exhibits resilience to robot failures and communication disruptions. In conclusion, 

integrating Deep Q-Learning into swarm robotics provides a robust and efficient solution for 

cooperative search and rescue operations, addressing key limitations of traditional methods in 

emergency response scenarios. 
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Cooperative Decision-Making, Adaptive Framework, Autonomous Robots. 

1. Introduction 
Inspired by the collective behaviour in natural systems, such as ant colonies and bird flocks, 

swarm robotics has emerged as a revolutionary field in robotics [1]. It consists of deploying multiple 

autonomous robots that can perform complex tasks which are difficult or impossible for a single robot 

to achieve collaboratively [2]. By exploiting the decentralized control and local interactions, swarm 

robotics systems achieve scalability, robustness, and adaptability, becoming suitable for dynamic, 

uncertain, and large-scale environments [3]. In the last few years, swarm robotics has been extended 

to agriculture, environmental monitoring, industrial automation, and, most importantly, search and 

rescue missions (SRM) [4]. Search and rescue operations generally occur in hazardous environments, 

like disaster scenes, where response must be fast, flexible, and efficient in exploration [5].  

Though swarm robotics showed promising applicability in such scenarios, the existing approaches 

are dominantly based on heuristic methods or rule-based frameworks that can hardly handle the 

arising complexities in real-time decision-making, coordination, and adaptability [6]. The traditional 

approach also deals with the problems of being non-scalable, resource-consuming, and 
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communication-constrained environments being quite fragile towards communications [7]. Increasing 

demands on effectiveness and robustness have compelled the scientific world to incorporate artificial 

intelligence in swarm robotics [8]. Deep reinforcement learning, or deep Q-Learning, has emerged as 

an immense ability to endow agents with learning and autonomous policies that adapt to complicated 

and dynamic tasks [9]. The conventional approach for search and rescue in swarm robotics comes 

with key limitations regarding scalability, adaptability, and coordination. More generally, rule-based 

and heuristic methods are suboptimal for decision-making in dynamic or unpredictable environments, 

resulting in inefficient exploration and low victim detection rates [10]. 

The problem statement is developing adaptive, decentralized frameworks for efficient 

autonomous learning of optimal policies in cooperative search and rescue missions. It also aims to 

scale up the problem size, maximize coverage, decrease the time to complete missions, and exhibit 

resilience in this dynamic environment. The DQLSRO approach combines the Deep Q-Learning 

algorithm with swarm robotics optimization, which is applied to cooperative search and rescue 

missions. Every robot in this approach has its Deep Q-Network, which it uses to learn autonomously 

optimal actions based on environmental feedback. Robots also use decentralized communication to 

update policies and make coordinated decisions. Multi-agent reward functions are incorporated into 

mission objective optimization, such as maximizing victim detection, minimizing exploration time, 

and obstacle avoidance. The framework's effectiveness is demonstrated in simulation for experimental 

missions under challenging conditions. The work has key meaning for  

• To introduce a novel Deep Q-Learning-based framework for adaptive, decentralized 

search and rescue operations. 

• To improve mission efficiency by reducing completion time and enhancing victim 

detection rates. 

• To enhance resilience against robot failures and communication disruptions in dynamic 

environments. 

• To demonstrate the scalability and robustness of DQLSRO through comprehensive 

experimental evaluations. 

The paper is organized as follows: Section 1 gives an introduction and reviews related work in 

swarm robotics and deep reinforcement learning. Section 2 elucidates the methodology proposed. 

Section 3 presents the experimental setup and results. Finally, Section 4 concludes with key insights 

and future research directions. 

de Carvalho, José Pedro Ferreira Pinheiro [11] proposed a Deep Reinforcement Learning (DRL) 

framework to enable cooperative robotic navigation in dynamic environments. DRL techniques were 

applied to train robots to learn optimal navigation policies autonomously in simulated multi-agent 

setups. Results showed significant improvements in navigation efficiency and adaptability. However, 

the research remains limited to simulated environments and lacks real-world validation. Challenges 

related to hardware constraints and environmental complexities must be addressed for practical 

application. 

Chitikena et al. [12] introduced an ethical and design framework for search and rescue robotics 

during the response phase. The framework integrated ethical principles with design considerations, 

emphasizing safety, adaptability, and effective human-robot interaction. It provided valuable insights 

into the development of SAR robots that meet safety and ethical standards. However, the study is 

mainly conceptual, with minimal experimental validation to demonstrate its practical applicability in 

real-world scenarios. 
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Phadke and Medrano [13] presented an agent-focused framework to improve operational 

resiliency for UAV swarms in search and rescue missions. This framework uses decentralized, agent-

based modeling and fault-tolerance strategies to optimize UAV coordination and performance. Results 

showed improved fault tolerance and efficiency in simulated SAR missions. However, this study is 

bounded to UAV systems and does not address broader applicability, integrating ground or hybrid 

robotic systems. 

Solmaz et al. [14] developed a robust robotic framework for search and rescue in harsh 

environments, addressing challenges in scalability and autonomy. Robots with advanced sensors, 

mobility, and decision-making capabilities were tested in controlled environments, demonstrating 

improved robustness and adaptability. However, scalability and limited autonomy remain unresolved, 

with difficulties persisting in large-scale or resource-constrained scenarios. 

Han et al. [15] proposed a collaborative task allocation and optimization solution for UAVs in 

SAR missions. A hybrid optimization approach combining genetic algorithms and auction-based 

methods efficiently distributed tasks. Results showed reduced mission completion times and 

optimized UAV resource utilization. However, the focus is exclusively on UAV systems, with no 

consideration of heterogeneous robotic teams that could broaden the method's applicability. 

Inspired by biological systems, Sivaraman et al. [16] proposed a pack-hunting strategy for 

heterogeneous robots in rescue operations. Bioinspired algorithms simulated predator-prey dynamics 

to enhance coordinated task allocation among diverse robots. Results indicated improved task 

efficiency and adaptability in dynamic rescue scenarios. However, as the system scale increases, 

complexity becomes a significant challenge. Additionally, practical testing is limited, leaving 

questions about real-world robustness unanswered. 

Queralta et al. [17] introduced a collaborative multi-robot framework for search and rescue, 

emphasizing planning, coordination, and active perception. The framework utilized real-time planning 

and robust perception techniques to improve multi-robot coordination. Results revealed significant 

improvements in search efficiency and victim detection rates in simulated scenarios. However, the 

framework lacks extensive testing in dynamic real-world SAR environments, limiting its immediate 

applicability to practical challenges. 

Sanjay Sarma et al. [18] explored the impact of heterogeneity on collective behaviours in multi-

robot systems during search and rescue missions. Simulation-based analysis highlighted how 

heterogeneity improves system robustness, adaptability, and task efficiency. While the results 

emphasized the benefits of diversity in robot systems, the study focused on simulations and lacked 

real-world validation, leaving its practical applicability in heterogeneous multi-robot scenarios 

unverified. 

2. Proposed Methodology 
The problem is formulated within a dynamic and partially observable grid environment, 

representing a disaster-stricken area. The grid is characterized by 𝐺 = (𝑋, 𝑌), where 𝑋 𝑎𝑛𝑑 𝑌 denote 

the spatial dimensions of the area. Robots are deployed with sensors and actuators, enabling them to 

detect victims, avoid obstacles, and communicate with other robots. Each robot 𝑅𝑖  is defined as 𝑅𝑖 =

(𝑆𝑖, 𝐴𝑖, 𝐶𝑖) where 𝑆𝑖  represents the sensor capabilities (e.g., range 𝑟𝑠, victim detection probability 𝑃𝑑 ), 

𝐴𝑖 denotes actuator functions (e.g., mobility and obstacle avoidance), and 𝐶𝑖 defines communication 

parameters (e.g., range 𝑟𝑐, latency 𝐿𝑐). The mission involves optimizing three key objectives: as 

Maximizing Coverage (𝐶𝑣), Minimizing Rescue Time (𝑇𝑟) and Ensuring Fault-Tolerant 

Communication (𝐹𝑐). The mathematical expressions for these are shown in equation 1.   
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𝐶𝑣 =
∣𝐺𝑣∣

|𝐺|
            

𝑇𝑟 =
1

|𝑉|
∑ (𝑡𝑟𝑒𝑠𝑐𝑢𝑒(𝑣) − 𝑡𝑑𝑒𝑡𝑒𝑐𝑡(𝑣))𝑣∈𝑉                                                                                (1) 

𝑃𝑐 =
𝑀𝑠𝑢𝑐𝑐𝑒𝑠𝑠

𝑀𝑡𝑜𝑡𝑎𝑙
          

  

where 𝐶𝑣 Coverage is defined as the fraction of the total grid 𝐺 visited by at least one robot within 

a given time 𝑇. 𝐺𝑣 is the set of visited cells. 𝑇𝑟 refers to the rescue time for each victim v∈V.  V is the 

set of victims, defined as the time elapsed after detection until rescue. The objective of 𝑇𝑟 is to 

minimize the mean rescue time. 𝑃𝑐  communication reliability is measured by successfully delivering 

messages between robots within a time threshold. The fault-tolerance objective is to maximize the 

communication success rate (𝑃𝑐). 𝑀𝑠𝑢𝑐𝑐𝑒𝑠𝑠 is the number of successfully delivered messages and 

𝑀𝑡𝑜𝑡𝑎𝑙 is the total number of messages. Observability and environmental dynamics call for real-time 

decision-making and robust communication protocols. Achieving optimality on these objectives 

involves trade-offs since high coverage might increase rescue time or strain communication reliability. 

Figure 1 shows the process of the proposed DQLSRO method. 

 

Figure.1. Process of the Proposed DQLSRO Method 

a) Robot Representation and State Definition 

In a multi-agent system, each robot is an independent agent that can decide based on what it 

perceives and interacts with. A robot's state at any time 𝑡 is represented as an extensive vector 𝑆𝑡 

embodies critical information needed in decision-making and coordination. It is defined in equation 2. 

Figure 2 shows the robot representation and state definition. 

𝑆𝑡 = {𝑃𝑡 , 𝑂𝑡 , 𝑉𝑡 , 𝐶𝑡 , 𝐸𝑡}         (2) 
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Figure.2. Robot representation and state definition 

The state of the robot is defined by its position for navigation and coordination (x, y, z), proximity 

to obstacles (𝑂𝑡) measured using sensors for safe navigation and the probability of finding a victim 

nearby (𝑉𝑡  =  𝑃(𝑣𝑖𝑐𝑡𝑖𝑚|𝑠𝑒𝑛𝑠𝑜𝑟𝑠)). It also monitors the communication state (𝐶𝑡) with signal 

strength and connection status parameters and keeps track of an exploration history (𝐸𝑡) to avoid 

revisiting the same area. The state will help make efficient decisions, collaborate, and adapt to 

dynamic environments.  

b) Action Space 

In a multi-agent system, each robot is acting in some discrete action space denoted by 𝐴𝑡, 

comprising all possible actions the robot might take at some time 𝑡. Such actions depend on the time 

and the robot's state 𝑆𝑡 along with environmental conditions. The robot's possible actions at time t can 

be defined as 𝐴𝑡 = {𝑎1, 𝑎2, … , 𝑎𝑛} each action 𝑎𝑖 corresponds to a particular task the robot can 

execute. If the current position 𝑃𝑡 = (𝑥, 𝑦), the new position 𝑃𝑡+1 after moving in a direction 𝑑. The 

action space 𝐴𝑡 is updated dynamically based on the robot's environment and state. Figure 3 shows the 

robots' action spaces. 

 

Figure.3. Robot’s Action Space 
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The action set contains moving (equation 3). The robot moves to an adjacent cell in the grid 

environment. Staying in the current position (equation 4). The robot does not move and remains at 

𝑃𝑡. Initiating victim rescue (𝑎𝑟𝑒𝑠𝑐𝑢𝑒). If the robot detects a victim (𝑉𝑡 > 𝜃, where θ is a detection 

threshold), it initiates a rescue protocol. This may include signaling other robots for assistance. The 

robot communicates with neighbouring robots (𝑎𝑐𝑜𝑚𝑚) - The robot shares information, such as 

victim locations and areas explored, with other robots in its communication range 𝑟𝑐. 

𝑃𝑡+1 =

{
 

 
(𝑥, 𝑦 + 1)     𝑖𝑓 𝑑 = 𝑁𝑜𝑟𝑡ℎ

(𝑥, 𝑦 − 1)     𝑖𝑓 𝑑 = 𝑆𝑜𝑢𝑡ℎ
(𝑥 + 1, 𝑦)        𝑖𝑓 𝑑 = 𝐸𝑎𝑠𝑡

(𝑥 − 1, 𝑦)        𝑖𝑓 𝑑 = 𝑆𝑜𝑢𝑡ℎ

                               (3)

    

𝑃𝑡+1 = 𝑃𝑡           (4) 

Table 1 Reward Function Design 

Reward 

Component 

Description Mathematical Expression Purpose 

Positive 

Rewards 

   

Locating a 

Victim 

The reward for 

successfully detecting a 

victim based on sensor data. 

𝑅𝑣𝑖𝑐𝑡𝑖𝑚  =  𝛼 ∙

𝑣𝑖𝑐𝑡𝑖𝑚 𝑠𝑒𝑛𝑠𝑜𝑟   

Locates a victim 

Avoiding 

Obstacles 

The reward for avoiding 

obstacles during movement 

(safe navigation). 

𝑅𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒−𝑓𝑟𝑒𝑒 = 𝛽 ⋅ (1 −
𝑑𝑚𝑖𝑛

𝑑𝑠𝑎𝑓𝑒
)  

Promotes safe 

navigation by 

avoiding collisions. 

Sharing 

Information 

Reward for successful 

communication with 

neighboring robots (data 

exchange). 

𝑅𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝛾   

Information Shared  

Fosters 

collaboration and 

information sharing 

between robots. 

Negative 

Rewards 

   

Collisions Penalty for colliding 

with obstacles or other 

robots. 

𝑅𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 = −𝛿  Discourages 

collisions and unsafe 

actions. 

Wasted 

Exploration 

Penalty for revisiting 

previously explored areas 

(redundant exploration). 

𝑅𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡 = −𝜖  

Redundant Cells Visited 

Ensures efficient 

area coverage by 

penalizing redundant 

exploration. 

Cumulative 

Reward 

 𝑅𝑡 = 𝑅𝑣𝑖𝑐𝑡𝑖𝑚 + 𝑅𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 −

𝑓𝑟𝑒𝑒 + 𝑅𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 −

𝑅𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 − 𝑅𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡  

Summation of 

all components to 

define the robot’s 

overall performance 

at any time t. 
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Where 𝛼, 𝛽, 𝛾, 𝛿, 𝜖 are the weight factors to adjust the importance of each reward or penalty, 𝑑𝑚𝑖𝑛 

is the minimum distance to obstacles detected. 𝑑𝑠𝑎𝑓𝑒 refers to the predefined safe distance to maintain 

from obstacles. 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑆ℎ𝑎𝑟𝑒𝑑 is the amount of data communicated with neighbouring robots. 

𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡 𝐶𝑒𝑙𝑙𝑠 𝑉𝑖𝑠𝑖𝑡𝑒𝑑 is the number of already-visited grid cells revisited unnecessarily. 

c) Deep Q-Learning Framework for Robot Action Selection 

Each robot uses DQN to make decisions and improve its behaviour over time autonomously. The 

DQN model is a neural network approximating the Q-function, which estimates the expected future 

reward for taking a given action in a specific state. 

i. Input Layer - Encodes the Robot’s State (𝑆𝑡):  The input layer of the Deep Q-Network (DQN) 

receives the robot's state (𝑆𝑡) at time (𝑡), which encapsulates all the relevant information about the 

robot's environment and current condition. This state comprises the position of the robot in the grid, 

its distance from obstacles measured using sensors such as LiDAR, the estimated probability of a 

victim being close, based on thermal or sound detection, the communication state, whether the robot 

can communicate with its neighbours and its exploration history that shows which areas have already 

been covered. For processing in the DQN, this state is typically encoded as a vector or, in some cases, 

image-like data (mainly if visual sensors are used), which is then fed into the neural network for 

further processing and decision-making. 

ii. Hidden Layers - Processing the State Information: The hidden layers of the DQN consist of 

convolutional layers (in the case of using image-like input) and fully connected layers to process the 

robot's state and extract relevant features. In this case, the convolutional layers are used for 

automatically detecting spatial patterns directly from visual or spatial data, such as thermal images or 

LiDAR scans, so that it can understand the environment's layout. After that, the features are passed on 

to the fully connected layers, which assemble all this information, learning complex relationships 

between the state variables and the expected rewards. This will enable the network to recognize the 

most important patterns and features for any action selection in a given state, contributing to better 

decision-making. 

iii. Output Layer: Produces 𝑄(𝑆𝑡 , 𝑎): The output layer of the DQN is where the Q-values are 

generated, representing the expected future reward for each possible action (𝑎) in the given state (𝑆𝑡). 

Each Q-value represents a different action the robot could take, such as moving in a specific direction 

or rescuing a victim. The Q-value 𝑄(𝑆𝑡 , 𝑎) represents the expected total future reward the robot will 

accumulate if it acts (𝑎) in the state (𝑆𝑡) and thence onward follows the optimal policy. The output 

layer emits one Q-value for each action, which is used to choose the best action via an epsilon-greedy 

strategy. This strategy is that the robot explores random actions with some small probability of 

selecting a (𝜖), usually an action whose Q-value is maximised. The training goal is the optimization of 

those Q-values to make the robot consistently decide what actions to select to maximize its long-term 

rewards. 

The DQN learns to update its Q-function over time using the Q-learning update rule as in 

equation 5. 

𝑄(𝑆𝑡 , 𝑎) ← 𝑄(𝑆𝑡 , 𝑎) + 𝛼(𝑅𝑡 + 𝛾𝒎𝒂𝒙𝑎′𝑄(𝑆𝑡+1, 𝑎′) − 𝑄(𝑆𝑡 , 𝑎))     (5) 

where 𝛼 is the learning rate (how quickly the network adapts). 𝑅𝑡 is the immediate reward after 

acting 𝑎 in state 𝑆_𝑡. 𝛾 is the discount factor (how much future rewards are valued).  𝒎𝒂𝒙𝑎′𝑄(𝑆𝑡+1
, 𝑎′) is the estimated future reward (for the next state 𝑆𝑡+1). The robot uses this update rule to adjust 

the Q-values and improve its policy over time. 
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d) Communication and Coordination 

Local communication allows robots to communicate with each other to share vital information. 

Robots share partial maps of the environment that have been explored, locations of victims, and 

information about observed obstacles. These shared data assist each robot in updating its DQN in a 

decentralized fashion so that the robots can adapt their behaviours and make informative decisions. 

By disseminating this information, the robots can coordinate their exploration and rescue efforts 

efficiently and effectively to optimize the global mission without any central control. 

 

3. Result and Discussion 
a) Dataset Explanation 

The Rescue Object Detection dataset [19] is designed to train and evaluate object detection 

models in emergency and rescue scenarios. It contains annotated images of objects such as fire 

extinguishers, first aid kits, helmets, and other critical rescue-related equipment. Each image is 

labelled with bounding boxes and class information, making it suitable for machine-learning tasks like 

object detection and classification. This dataset is ideal for applications in safety compliance, robotic 

rescue missions, and augmented reality in disaster management. 

b) Performance Metrics 

The proposed DQLSRO is compared with other traditional approaches: Agent-Based Modeling 

with Fault Tolerance Strategies (ABMFTS) [13], Hybrid Optimization Approach (HOA) [15], and 

Collaborative Multi-Robot Framework (CMRF) [17] in terms of key performance metrics, including 

the Task Completion Time, Victim Detection Rate, and Resilience to Failures (Fault Tolerance), are 

presented to confirm the effectiveness of DQLSRO in most of these areas. 

Task Completion Time: The total time the robot swarm takes to accomplish the SRM, that is, the 

time taken to find all victims, avoid obstacles, and navigate optimally in the environment. The 

proposed DQLSRO framework minimizes TC by considering deep Q-learning for the adaptive 

optimization of robot policies. This can be given by equation 6. 

𝑇𝐶𝑇 = max
𝑟∈𝑅

(∑ 𝛥𝑡𝑟
𝑇
𝑡=1 )          (6) 

where 𝑅 refers to the set of all robots in the swarm. 𝛥𝑡𝑟 is the time step in which robot 𝑟 

completes a task (e.g., finding a victim, avoiding an obstacle). 𝑇 is the total number of time steps until 

all robots complete all tasks. 𝑚𝑎𝑥 Ensure that the slowest robot dictates the total time it takes to 

complete its part of the mission. Each robot learns optimal policies using a Deep Q-Network (DQN) 

for real-time decision-making within the DQLSRO framework to reduce time spent (𝛥𝑡𝑟) on each task 

to avoid redundant exploration and ensure efficient coordination among robots. It further consists of 

multi-agent reward functions, minimizing the overall mission completion time (𝑇) by coverage 

efficiency, allowing faster victim detection through collaboration. 
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Figure.4. Task Completion Time Analysis 

Figure 4 compares the task completion time among different methods, including ABMFTS, HOA, 

CMRF, and DQLSRO, for various robots. DQLSRO has the shortest bars in all cases, meaning it 

effectively finishes the mission ahead of traditional methods. By increasing the number of robots, 

DQLSRO shows high scalability by reducing completion time by 30% compared to others. 

Conventional methods, such as ABMFTS and HOA, have slower improvements with more robots, 

emphasizing their inefficiencies in coordination and adaptability to dynamic environments. 

Victim Detection Rate (VDR): The VDR measures the proportion of victims successfully detected 

by the swarm of robots during a search and rescue mission. It is a key metric for evaluating the 

framework's effectiveness in efficiently locating victims. The VDR is expressed in equation 7. 

𝑉𝐷𝑅 =
𝑁𝑑

𝑁𝑡
× 100          (7) 

where 𝑁𝑑  is the number of victims successfully detected. 𝑁𝑡  is the total number of victims in the 

environment. The result is expressed as a percentage (%). 

 

Figure.5. Victim Detection Rate Analysis 
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Figure 5 visualizes the Victim Detection Rate for four methods, ABMFTS, HOA, CMRF, and 

DQLSRO, under various robots (5, 10, 15, 20, 25, 30). The colour intensity represents the VDR, 

where darker shades show higher detection rates. DQLSRO constantly shows higher values of VDR 

for all robot counts, proving to be more efficient in victim detection. In contrast, the traditional 

approaches of ABMFTS and HOA show lower and spread-out detection rates; hence, these 

approaches are limited in their scalability and performance in more enormous robot swarms. This 

further improved the effectiveness of DQLSRO on large-scale search and rescue operations. 

Resilience to Failures (Fault Tolerance): In swarm robotics, resilience to failures means that the 

system should not stumble in its tasks even if a subset of the robots breaks or communications among 

the robots are lost. The fault tolerance metric measures how well the swarm's performance is 

maintained with any breakdowns of its robots. Fault Tolerance (FT) can be defined as the ratio of task 

completion times, showing how well the system performs despite failures. Equation 8 shows how well 

the system performs despite failures. 

𝐹𝑇 =
𝑇𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒−𝑇𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

′

𝑇𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒
× 100         (8) 

where 𝑇𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 be the task completion time when all robots are operational.   𝑇𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒
′  be the 

task completion time when some robots fail. 𝑁 be the number of robots in the swarm. This equation 

provides a percentage value indicating the decrease in task performance due to robot failures. A higher 

FT value indicates better fault tolerance. 

 

Figure.6. Fault Tolerance Analysis 

Figure 6 shows the fault tolerance of four swarm robotics methods: ABMFTS, HOA, CMRF, and 

DQLSRO. It shows the task completion time when the percentage of robot failure increases. The X-

axis represents the percentage of failure from 0% to 50%, and the Y-axis shows the corresponding 

task completion time in minutes. DQLSRO has the best robustness with the smallest increment of task 

completion time as robot failures increase, which indicates it has better fault tolerance than traditional 

approaches like ABMFTS and HOA. 

4. Conclusion 
The DQLSRO framework achieves the goal of integrating Deep Q-Learning in swarm robotics to 

address complex problems of search and rescue applications. The work gives robots independence in 

learning through decentralized decisions made by a swarm of robots. It attains better performance on 

mission execution by reducing failure times and robot victim detection rates. Most importantly, 
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coordination between robots creates a robust execution that is effective against failures caused by 

dynamic environments. The multi-agent reward structure incentivises collaboration and optimizes 

exploration, victim location, and obstacle avoidance. Experimental results prove the superiority of 

DQLSRO over traditional rule-based and heuristic methods by showing its scalability and resilience 

in different scenarios. DQLSRO has the possibility of revolutionizing swarm robotics to provide a 

transformative solution for critical applications such as disaster management and search and rescue. 

Future work will concentrate on designing lightweight learning algorithms that could improve 

scalability and incorporate advanced fault-tolerant communication mechanisms to increase the 

robustness of decentralized operations. Real-world validation through deployment on physical robots 

and the integration of advanced sensor systems can further advance the practicality of DQLSRO in 

emergency response scenarios.  
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