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A B S T R A C T  

Subgraph selection involves searching an input graph for subgraphs with a certain attribute. Graph 

pattern mining (GPM) relies on this technique, despite its computing complexity and rapid growth. 

Problems with uncoalesced access to memory, separation, and strain unbalance make efficient 

subgraph identification on GPUs a huge problem, given GPUs' success in speeding up operations 

across multiple industries. It is surprising that these challenges have not received sufficient attention 

in earlier research. This work presents new methods for effectively building and running subgraph 

enumeration on GPUs. Optimization of computational resource usage is achieved by combining a 

warp-centric design with a Depth first search (DFS) style approach. Memory efficiency, execution 

divergence, and GPU activity parallelization could all be enhanced by integrating these two 

methods. An affordable load balancing level is also incorporated for the purpose of dispersing work 

among thread warps, which further decreases GPU idleness. The GraphDuMato system facilitates 

the utilization of GPM methods with its intuitive application programming interface (API). Testing 

proves that GraphDuMato can outperform state-of-the-art GPM algorithms on a regular basis and 

may mine subgraphs with up to twelve trees. 
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1. Introduction 
Social media [1] as well as biological network [2] studies utilize graph pattern mining. 

The main attention is on important graph subgraph patterns. Sequential subgraph enumeration 

across an input graph searches for subgraphs that correspond to a graph property. Greater 

subgraph mining requires more memory and processing power [3]. The Bio-disease 1 biological 

dataset has 516 nodes with 1,2 thousand edges. An estimated 112 billion 10-node subgraphs in 

this collection. Storing these subgraphs would take 4 terabytes of RAM based on a 4-byte 

numeric for each vertex [4].  

To enumerate subgraphs, the subgraph extension process is essential. Subgraph s is 

merged with k vertices using a set of extension (vertex ids) obtained from the adjacency of 

edges in subgraph s. The study has added k+1 nodes to your subgraph. The subgraph extension 

of s1 produces four extended subgraphs using induced subgraphs s1 and s2, while s2 produces 

six. Given the potential for extraordinarily long execution durations owing to the massive 
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number of subgraphs requiring analysis, efforts are underway to develop massively parallel 

architectures [5]. Particular GPM methods have been designed for parallel implementation in 

the context of shared and dispersed memory devices [6]. In most cases, these techniques will 

reduce the memory and processing requirements by modifying . Even while new algorithms 

have shown promising performance in some contexts, their development has been a lengthy 

and difficult process [7].  

The reasoning behind this is that different GPM algorithms may be able to benefit from 

different sets of constraints. Because of this need, GPM systems were created. These systems 

can support certain graph properties, which allows for subgraph listing and the application of 

specific GPM algorithms. [8] The combination of GPM systems' programmability and 

performance is ideal because it strikes a good balance between the two. GPUs speed up a lot of 

programs [9]. The architectural efficiency of GPUs is severely constrained by subgraph 

enumeration parallelization approaches. These limitations are concerned with memory non-

coalescence, divergences, and imbalances in load. Pangolin is the most compact GPU-based 

GPM system [10].  

The downside is that it uses a lot of memory and wasn't designed or developed to make 

the most of the GPU's processing power. This is achieved by reducing load imbalance, 

enhancing the memory access structure, and avoiding divergence. Then, we will discuss in 

detail the main challenges of concurrent subgraph identification on GPU that were found in this 

study [11].  

The first hurdle that needs to be surmounted is the enormous memory demand that 

enumeration causes. The combinatorial explosion of subgraphs could occur as the enumeration 

progresses because subgraph allowance depends on integration a subgraph with its extensions. 

The BFS technique, used in Pangolin [12], is an outstanding optimal for parallel subsection 

enumerations since it consistently displays parallelisms when exploring adjacency lists. This 

style was created by Pangolin. Conversely, all states linked to extended subgraphs are 

materialized by BFS. And as this method's memory consumption grows exponentially with 

subgraph size, it can only be used to enumerate very small subgraphs. In contrast, the memory 

requirement is reduced by using the depth-first search (DFS) style technique, as only a small 

fractions of the states are retained during enumeration. Though, the GPU's parallel performance 

might be negatively affected by this approach's strided and irregular memory demands [13].  

The second issue arose because the enumeration procedure is fundamentally erratic. 

Using subgraph-centric processing, which treats subgraphs as separate operations, the latest 

generation of GPM systems enables concurrent subgraph enumeration [14]. Different warp 

threads access strided memory locations or graph parts based on the subgraph they are 

processing, causing memory decoalescence and inefficient memory bandwidth utilization. The 

adjacency lists' differing widths and processing costs cause execution divergence in scale-free 

graphs. Thus, GPU usage is inefficient. The third issue is load imbalance, which arises from the 

unpredictable cost of subgraph research. This makes cost estimation difficult. Even with 

subsections s1 and s2 assigned to separate threads for parallelism, idleness is likely. Some 

threads finish early. Address these three challenges to successfully deploy GPM techniques on 

GPUs in this research.These strategies are presented in greater detail below. The following is a 

summary of our contributions: 

 To demonstrate the importance of subgraph enumeration in graph pattern mining (GPM) 

and its computational complexity and rapid evolution problem in evaluating complex data 

structures.  
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 To discuss the challenges of subgraph enumeration on Graphics Processing Units (GPUs), 

such as uncoalesced memory access, divergence, and load imbalance, which reduce 

performance and scalability.  

 To emphasize the need for creative solutions to GPU-accelerated subgraph enumeration 

concerns in the literature.  

 To use depth-first search style search (DFS-wide) and warp-centric architecture to improve 

GPU subgraph enumeration efficiency and scalability to optimize computational resource 

utilization and overcome inherent challenges. 

An overview of the research that was done is provided below. A thorough review of the 

literature and research methodologies in use is done in the second section. Section 3 contains a 

description of Preliminaries and problem statement. Section 4 provides a description of the 

research plan, research methods, and processing procedures. Section 5 contains a description 

of the findings analysis. The main conclusion and upcoming work are covered in the sixth 

section. 

2. Literature Survey 

Guo et al. [16] presented the Subgraph mining and network motif finding require 

subgraph enumeration. GPUs parallelize subgraph enumeration, while set intersection 

procedures take up to 95% of processing time. This article reuses these procedures' results to 

prevent recalculating. Generate a reusable plan using a reuse discovery technique, then execute 

the plan to provide subgraph enumeration results using a new reusable parallel search strategy. 

The GPU implementation can outperform state-of-the-art GPU methods by 5 times. 

Dhote et al. [17] shown by offering end users constant support, distributed cloud 

technologies enhance mobile healthcare applications. Data storage and reorganization 

inefficiencies can still hasten the demise of services and recommendations. Improving data 

organization and mining while reducing errors is the goal of the Distributed Data Analytics 

Organization Model. To make sure that service deployment goes smoothly, the model employs 

federated learning, iterative learning in real-time, and state management. Using several 

circumstances, we assess how well this model performs. 

The biggest issue of graph analytics is subgraph enumeration, reported by Yang et al. 

[18], which entails finding every query graph on a vast data graph. This work introduces HUGE, 

a distributed subgraph enumeration system. Huge has a revolutionary two-stage execution 

mode with lock-free and zero-copy cache, a BFS/DFS-adaptive scheduler to reduce memory 

consumption, two-layer intra- and inter-machine load balancing, and an optimiser to compute 

an advanced execution plan without constraints. Has a mixed communication layer. Huge can 

speed up distributed subgraph enumeration with confined memory.  

Subgraph matching, first introduced by Sun et al. [19] as a foundational method in 

graph analytics, finds every instance of query graph Q in data graph G. It is usual practice to 

sort non-candidate vertices in Q after filtering them in G in order to enumerate results. Recent 

study has shown that GPUs can speed up subgraph matching. The current methods for filtering 

and ranking that rely on GPUs are memory-intensive and fail miserably. These issues are 

addressed by the efficient GPU-based subgraph matching algorithm EGSM. The cuckoo trie 

data structure ranks query vertices according to projected candidate counts and dynamically 

maintains filtering candidates. In order to enumerate the results, the study uses a combination 

of breadth-first and depth-first search strategies with memory management. This means that 

EGSM is superior than well-known GPU-accelerated methods such as GSI and CuTS.  
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For optimal performance, Wang et al. [20] proposed SMOG, a multi-card GPU-based 

scalable subgraph matching system. To address duplication difficulties caused by subgraph 

automorphism, SMOG adaptively modifies graph preprocessing and examines the subgraph's 

symmetry. Using multi-level parallelism, the program was able to achieve an impressive 553× 

acceleration and raise the number of GPU cards from 1 to 1,024. Speedups of 2.94 times for 

SMOG, 203.55 times for RPS (a subgraph matching system), and 35,455.52 times for Gunrock 

(a graph processing system) are typical. The system is capable of accommodating a range of 1–

1,024 GPU cards.  

Hussein et al. [21] suggested an technique called Graph Pattern Mining (GPM) may 

detect forms in graphs; the most typical of these shapes are skewed areas. Modern GPM 

methods partition these regions into smaller components and distribute their workload among 

several servers. Instead of splitting skewed areas, this research suggests a framework called 

GraphINC. A programmable network switch is used to offload the skewed section by the 

framework, which introduces a new graph partitioning mechanism. The framework expedited 

results when deployed on a commercial 100 Gbps switch. 

Gui et al. [21] stated that the aim of graph mining is to discover hierarchical data inside 

graphs. Optimization of matching orders in pattern-centric systems reduces search space, 

although this approach can result in computational redundancy. In order to solve difficult graph 

mining problems, this article introduces SumPA, a pattern-centric approach with great 

performance that eliminates unnecessary calculations. SumPA optimizes the system for storage 

and processing, uses a pattern abstraction technique, and guides pattern matching through 

abstraction. When tested on real-world graphs, it achieves better results than the state-of-the-

art systems Peregrine (61.89×) and GraphPi (8.94×). When it comes to mining problems on 

huge graphs, SumPA finishes in a matter of minutes, but Peregrine takes hours or even days. 

3. Preliminaries  

let's pretend for the purpose of simplicity that there are no labels and no directed graphs; 

nonetheless, our methodologies can be modified to include directed graphs and features with 

labels. The symbols 𝑉 (𝐺′) for vertices and 𝐸(𝐺′) for edges in a graph G are as follows.  

The study are primarily concerned with counting induced subgraphs, which are 

subgraphs S where (𝑣𝑖, 𝑣𝑗)  ∈  𝐸(𝑆) iff (𝑣𝑖, 𝑣𝑗)  ∈  𝐸(𝐺′), for every 𝑣𝑗 ∈  𝑉 (𝑆). The process 

of exploring a graph is described by incremental visits to the neighborhoods of vertices, which 

are referred to as traversals (Definition 1). (Definition 2) Induced traversal refers to the process 

of using a traversal to generate an induced subgraph from its vertices. Typically, algorithms of 

GPM begin their traversal of the graph at each vertex or edge. There are two main types of 

traversal strategies: breadth-first search (BFS) and depth-first search (DFS). Two traversals are 

considered to have found an automorphism (Definition 3) when they identify a shared set of 

vertex sets among subgraphs.  

Definition 1:The neighborhood of a subgraph 𝑆 𝑖n a graph 𝐺′ is determined by the formula 

𝑁(𝑆)  =  {𝑣 ∈  𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑢) | 𝑢 ∈  𝑉 (𝑆)} \ 𝑉 (𝑆), where 𝐺′ is the graph and S is a 

subgraph of 𝐺’. 

Definition 2 states that a set of traversal of 𝑘’ exclusive vertices in a graph 𝐺′ (𝑡𝑟 ⊆  𝑉 (𝐺′)) 

that stores the order in which each vertex 𝑣 ∈  𝑡𝑟 is visited in 𝐺′. Existing edges among the 

vertices accompany an induced traversal.  

Definition 3: A bijective function 𝑓 ∶  𝑉 (𝐺′)  →  𝑉 (𝐻) is an isomorphism between two graphs 

G’ and 𝐻 if and only if, for every edge (𝑣𝑖, 𝑣𝑗)  ∈  𝐸(𝐺′), (𝑓(𝑣𝑖), 𝑓(𝑣𝑗))  ∈  𝐸(𝐻). 
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Automorphisms are graphs 𝐺 ′and 𝐻 that are isomorphic to each other, defined as 𝑉 (𝐺′)  =

 𝑉 (𝐻).  

If a graph G' and a set of traversals T create the same inspired traversal trind, the 

definitive option is the single T traversal that can reach G' trind with the allowed visited order 

of vertices.By limiting themselves to canonical possibilities, GPM algorithms eliminate 

wasteful computation by ensuring that no two exploration traversals end up at the same induced 

traversal. It is possible to transform canonical candidates into a distinct representation known 

as a canonical representative, or pattern, in this context. Canonical labeling is a common 

procedure in GPM methods for subgraph classification; it involves converting an induced 

traversal to its canonical representation. 

4. Proposed Methods for Mining GPU Graphics Patterns Efficiently 

Graph pattern mining techniques that make good use of graphics processing units 

(GPUs) are detailed here. In this first section, the study provides a brief introduction to 

GraphDuMato, our technology that enables the GPU application of GPM algorithms at a great 

level. After that, the study shows that the way plan is to lessen memory request, boost memory 

combination and separations, and lessen load imbalance using the GraphGraphDuMato 

execution process. 

a. GraphDuMato Process for Execution 

Figure 1 shows the GraphDuMato execution pipeline, which develops GPM procedures 

founded on the listing function E using the filter-process approach. Decisions are represented 

by diamonds in Figure 1, while process steps are represented by circles. E(G, tr, k, P) is invoked 

first in order to iterate over all traversals of size k satisfying the condition P. This extension of 

the original traversal tr allows the study to begin. The control phase applies the termination 

condition (|tr| = 0) by first using tr as an input. The study's Control phase decides whether to 

continue subgraph enumeration when the traverse is not empty or halt it when it is.  

 

Figure 1. GraphDuMato execution workflow 

As enumeration continues, the Extend phase calculates extensions from the current 

traversal (|tr| < k) (Figure 1). Adjacency of traversal vertices determines these probable 

extensions in the area around the current subgraph (Def.1). Extend extends the current traversal 
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and any subsequent extensions. After then, application-specific semantics can pick subgraphs 

with anti-monotonic property P (|tr| < k) during the Filter phase. Property P can determine if a 

subgraph has cliques. Passing invalid extensions that do not satisfy property P does this. To 

guarantee property P, many filters can verify different circumstances. Filter produces valid 

extensions and current traversal. The Filter's output may have several invalidated or erased 

extensions, like v2 and v4 in Figure 1.  

Because the following Filter may filter or validate invalid data, this array of non-contiguous 

legitimate extensions may drastically influence performance. The optional Compact step after 

each Filter consolidates valid extensions into a contiguous memory/array. The enumeration 

output A (|tr| = k in Eq. 1) receives data that approaches the target number of vertices as the 

traversal size after all Filter/Compact stages. Traversals for pattern counting, buffering, or 

counting achieve this in the Aggregate phase. The Aggregate step is skipped if the vertices 

objective is not met. Enumerating subgraphs forward or backward is decided in the Move phase 

before continuing. The traversal can process unprocessed extensions using a recursive call. 

Following all extensions of the current traversal, recursion return lets the algorithm process 

smaller traversals. The Move's updated traversal should close Figure 1's cycle and restart the 

operation at the Control. We enumerate warps separately and allocate work warp-centrically. 

As a warp executes, threads enumerate the same traversal alternating between SIMD and SISD 

phases. Below, we'll discuss GPU-based GPM algorithms' memory demand, execution 

irregularities, and load imbalance reduction strategies. From design to implementation, the 

study covers the entire execution procedure. A simple API is also highlighted in the study.  

b. Exploring Subgraphs Across DFS 

The research presents a new method for exploring subgraphs throughout DFS that 

toggles between BFS and DFS phases to allow regular subgraph enumeration on GPU. Figure 

2 depicts the combined processes of BFS and DFS in a single iteration, as well as an overview 

of the DFS-wide exploration methods. Each DFS-wide intermediate stage is stored in a separate 

TE (Traversal Enumeration) array. The current traversal's vertex identifiers are kept in TE.tr, 

whereas the extensions formed during enumeration are maintained in TE.ext. 

.  

Figure 2. Exploring Subgraphs Across DFS 

A traverse is used to begin the enumeration in Figure 3. The extensions are efficiently 

produced and stored in a contiguous array (𝑇 𝐸[𝑖]. 𝑒𝑥𝑡) by the BFS phase and 𝑇 𝐸[𝑖]. 𝑡𝑟, which 

will be saved in a temp file. The DFS moves back or forward in the enumeration while receiving 

tr and extensions, depending on their length. Keep in mind that the DFS phase will improve 

memory efficiency by accessing extensions in a contiguous region that is likely cached, both in 

forward and backward directions. When the traversal size exceeds the target, the enumeration 

process switches between BFS and DFS phases. Since the study wishes to count traversals 𝑡𝑟 =

 {𝑣0, 𝑣1}, the steps taken in the BFS and DFS phases during one DFS-wide iteration are 

illustrated in Figure 3. A warp replicates the vertices in the current traversal's adjacency lists to 

extensions during the BFS phase (step 1), and only the distinctive extensions which are not in 
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𝑡𝑟 (step 2) are kept. Step 3 of the DFS phase involves generating extensions; step 4 involves 

increasing the current traversal and consuming a vertex (v2) from extensions.  

 

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟏: Move Primitive1 

𝑰𝒏𝒑𝒖𝒕: TE1 (traversal and extensions data), genedges1 (bool for generating edges)   

𝑶𝒖𝒕𝒑𝒖𝒕: Updates TE1 to the next traversal 

𝒊𝒇 traversal size1 != target size and extensions exist 𝒕𝒉𝒆𝒏 

    get next extension ext1 

    append ext1 to traversal in TE 

    if genedges1: generate edges for extended traversal 

𝒆𝒍𝒔𝒆 backtrack to previous traversal 

𝒊𝒇 no more traversals 𝒕𝒉𝒆𝒏 

    get new traversal from global queue 

centered on warp Algorithm 1's Move executes the DFS phase, while GraphDuMato's 

warp-centric Extend phase implements the BFS phase. In traversal enumeration, move can 

either advance or regress the warp. To determine whether traversal edges need to be constructed 

during enumeration, TE and genedges are required. As a method for extracting traditional 

representations from subgraphs, pattern counting makes use of traversal edges and connectivity 

data. As enumeration progresses, the Move phase increasingly produces edges if needed. If the 

current traversal is still greater than the starting limit and the collection of expansions is not 

empty, the warp will consume one extension and extend the current traversal to advance in the 

enumeration. Induce is a stage of the SIMD algorithm that, if necessary, generates extended 

traversal edges by reusing the current ones. If the current traverse does not have an empty 

present extensions set or is larger than the size limit, warp will move backward in accordance 

with the enumeration. Once the present traversal has been enumerated, the warp retrieves a 

fresh one from a worldwide queue.Move is the only costly induce functional and SISD phase 

since all warp threads use the same traverse to refresh data. 

c. Optimal Warp-Centered Filter-Process 

In this part, the study will go over the filter-process workflow's GraphDuMato phases 

and how they were designed and implemented using a warp-centric approach. By using this 

paradigm want to reduce the performance gap between our non-standard algorithms and take 

advantage of the DFS-wide strategy's parallelism and regular memory access. 

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟐: Extend Primitive1 

𝑰𝒏𝒑𝒖𝒕: TE1 (current traversal), start, end (range of vertices to consider) 

𝑶𝒖𝒕𝒑𝒖𝒕: True if new extensions generated, updates TE1 with new extensions   

𝒊𝒇 extensions already generated 𝒕𝒉𝒆𝒏 

    𝒓𝒆𝒕𝒖𝒓𝒏 False 

𝒇𝒐𝒓 each vertex id1 in given range 𝒅𝒐 

    𝒇𝒐𝒓 each neighbor e1 of vertex 𝒅𝒐 

        𝒊𝒇 e1 not in traversal and not in extensions 𝒕𝒉𝒆𝒏 

            add e1 to extensions 

    𝒓𝒆𝒕𝒖𝒓𝒏 True 

In algorithm 2, Graph processing tools like the GPM method, which use GraphDuMato 

primitives to access the TE data structure, are quite effective. Filter, compact, and aggregate are 

its three primary stages. The filtering process iteratively rejects extensions that fail to satisfy a 

property P. The TE data structure is accessed in this warp-centric phase using GraphDuMato 

primitives. An optional phase called compact finds the current traversal's extensions set, 

removes invalid locations from there, and then shortens the traversal. Using compaction to 
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remove invalid places lowers the cost of successive filter calls. Using intra-warp 

communication primitives like any sync and ballot, GraphDuMato efficiently implements this 

function with a focus on warps. The thread warp responsible for producing the actual GPM 

algorithm outputs is aggregated when it has derived traversals with k vertices. The three 

aggregating primitives provided by GraphDuMato are sum, pattern, and store. Since it be 

dependent on counting the existence of canonical legislatures through k vertices, the aggregate 

pattern presents the greatest challenge for GPU implementation of primitives. This is carried 

out in a warp basis, with a counter incremented, and every subgraph with k vertices converted 

to its canonical representation.  

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟑: Filter Primitive1 

𝑰𝒏𝒑𝒖𝒕: TE1 (traversal and extensions), P1 (property function), args1 (arguments for P) 

𝑶𝒖𝒕𝒑𝒖𝒕: Updates extensions in TE1 by invalidating those not satisfying P1 

𝒇𝒐𝒓 each extension ext1 in TE1 𝒅𝒐 

    𝒊𝒇 P1 (TE1, ext1, args1) is False 𝒕𝒉𝒆𝒏  
        invalidate ext1 

The approach to canonical relabeling is Nauty, which Pangolin and other GPM systems 

use for performing graph isomorphism on CPU in algorithm 3. The authors implemented GPU 

canonical relabeling. The dictionary they generate takes a traversals tr containing k vertices and 

its bitmap edge representation. Respectively warp can use local counts for canonical 

representation while using less RAM because no counters are wasted. The aggregate count 

primitive is used for clique counting GPM algorithms that produce pattern counts. After 

reducing warps' CPU counting, the global counting is generated, and every warp generates its 

own count that avoids races. Subgraph searching uses rudimentary aggregate store stores to 

analyze k-vertice subgraphs As soon as an examined subgraph with k vertices is created, the 

array buffer stores its connectivity bitmap. 

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟒: Clique and Motif Counting1 

𝑰𝒏𝒑𝒖𝒕: TE1 (data structure for traversals/extensions) 

𝑶𝒖𝒕𝒑𝒖𝒕: Counts number of cliques or motifs of size k1 

𝑺𝒕𝒆𝒑 𝟏:Clique Counting1 

𝒘𝒉𝒊𝒍𝒆 more traversals exist 𝒅𝒐 

    extend traversal with neighbors of first vertex 

    filter extensions lower than last added vertex (non-canonical) 

    compact extensions array   

    filter extensions that don't form a clique 

        𝒊𝒇 traversal has k1 vertices 𝒕𝒉𝒆𝒏         

count the clique 

     move to next traversal     

𝑺𝒕𝒆𝒑 𝟐:Motif Counting1  

𝒘𝒉𝒊𝒍𝒆 more traversals exist 𝒅𝒐 

    extend traversal with neighbors of all vertices 

    filter non-canonical extensions 

        𝒊𝒇 traversal has k1 vertices 𝒕𝒉𝒆𝒏  

         count motif pattern 

     move to next traversal 

In algorithm 4, cliques are counted. Vi and vj for every j in V(C) are members of the 

subgroup of size k in the set E(C). The clique counting issue takes a graph G and attempts to 

determine how many cliques there are with k vertices. Subgraphs sharing a pattern can be 

located by employing "lique counting" approaches. In the Extend phase, the array of extensions 

for the traversal is created from the neighbors of individual vertices. At least one clique 

extension must accompany each vertex in the traverse. Utilizing this idea, the [EX] call in line 

3 of Algorithm 4 gathers current extension from the neighbors of the first vertex in the traverse 
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([0,1]). Extensions below the final vertex are invalidated by the function [FL] on line 5, which 

is part of the canonical candidates. The array of extensions is compacted by [CP] at line 6. Line 

7 keeps on removing extensions that do not contain cliques by utilizing the notation [FL]. Valid 

extensions must be attached using the clique special method to each traverse vertex. A traversal 

and an extension are passed to the lower and is clique functions, which then return true or false, 

respectively. Lastly, one may use the [A1] counter to aggregate the length of a given array of 

expansions for traversals with k vertices. 

d. Load Balancing on Warp Levels 

An asynchronous workload redistribution mechanism on the CPU can alleviate load 

imbalance among warps caused by the cost of enumerating unique traversals. This approach 

uses data about warp levels to make judgments and runs all of its procedures on the central 

processing unit. In a consistent state, the CPU notifies the GPU of load balancing by setting a 

flag and pausing warp execution. We suggest a rebalancing condition that would cause work 

redistribution if the quantity of active warps is resolute to be less than a certain edge.  

By classifying warps as either active participants or passive observers, the redistribute 

method is able to achieve load balance. The central processing unit (CPU) checks warp activity 

and redistributes tasks while the graphics processing unit (GPU) is running. Altering the 

scheme's redistribute and balance steps to incorporate other strategies is a breeze. For every 

GPM algorithm that uses the counting of induced subgraphs, GraphDuMato's workflow can 

stand in for it. Functions [CT] and [MV] allow the runtime to examine execution termination 

conditions during these stages. The four steps—extend, filter, condense, and aggregate—make 

GPU application-specific semantics representation simple and efficient. Until the termination 

condition is met, algorithms run through fresh traversals. 

5. Result and discussion 

Graph pattern mining methods on GPUs are the focus of this paper's evaluation of 

suggested optimization techniques. It evaluates Graph GraphDuMato Depth-First Search 

(GDM DFS) and Graph GraphDuMato Warp-Centric (GDM WC) based on parameters like 

global load transactions and instructions per warp. When compared to GDM DFS, the GDM 

WC method improves the execution pattern, which in turn increases the number of instructions 

per warp by 3.8x to 13.3x. By facilitating more coordinated memory access patterns, the Warp-

Centric DFS-Wide method lessens the overall number of memory transactions. A criterion of 

40% for clique counting and a threshold of 10% for motif counting are used by 172,032 threads 

to determine the ideal load balancing threshold. When comparing GDM WC and GDM OPT, 

the optimized GraphDuMato GPU implementations achieve speedups of 65x for motif counting 

on the Citeseer dataset with k = 8. The GPU studies were carried out on TITAN V and NVIDIA 

Tesla V100 GPUs using CUDA 10.1 and CUDA 11. Highlighting the advantages of using GPUs 

for speeding up graph pattern mining algorithms, the results show that the suggested 

optimization techniques are helpful in boosting execution and memory efficiency for subgraph 

enumeration on GPUs. 

a. Dataset Description  

For machine learning and network analysis, the Citeseer dataset[23] contains citation 

networks. Besides source information, issue year, and document title, it provides nodes for 

computer science papers and edges for citations. A directed graph with dataset nodes and edges 

lets researchers study citation patterns, publication influence, and other network properties. 

Popular uses of Citeseer include links prediction, community discovery, and reference network 
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node classification. Researchers use this dataset to develop and test methods for citation 

networks and intellectual document analysis. 

b. Execution Time Speedup 

 

Figure 3. Execution Time Speedup 

In figure 3, execution time speedup is a key indicator for comparing GraphDuMato to 

other GPU-based Graph Pattern Mining (GPM) systems. Compare the time it takes the 

GraphDuMato GPU implementations (GDM OPT, GDM WC) to execute on a reference system 

like a state-of-the-art GPM system. If the speedup number is high, GraphDuMato GPU 

implementations outperform reference GPM systems. GraphDuMato beats state-of-the-art 

GPM solutions in efficiency, performance, and computational throughput with a greater 

speedup value. One of the most essential measures for evaluating GraphDuMato's optimization 

and GPU acceleration strategies is speedup, which compares its graph mining performance to 

competitors. GraphDuMato's design, memory optimizations, load balancing techniques, and 

parallelization methods speed up GPU-accelerated graph pattern mining. Compared to 

competing GPM systems, GraphDuMato is faster and more scalable. Graph mining algorithm 

efficiency improved. According to its speedup data, GraphDuMato beats modern graph pattern 

mining methods, demonstrating system optimizations 

c. Size of Enumerated Subgraphs 

 

Figure 4. Size of Enumerated Subgraphs 

As seen in Figure 4, GPUs help Pattern Mining handle larger subgraphs, especially 

those with 12 vertices. Utilizing these properties shows its efficiency, adaptability, and 

effectiveness in complex graph patterns. Due to its effective design and architecture, 

GraphDuMato handled larger subgraphs' computing demands without issue. Thus, network 

mining for patterns becomes more efficient, yielding more complete and useful results. It also 
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boosts productivity and lets you analyze complex graph topologies. Because it supports larger 

subgraphs, GraphDuMato excels at complicated graph pattern mining. Users can gain insights 

from complex data representations with this feature. 

d. Optimal Load Balancing Threshold 

 

Figure 5. Optimal Load Balancing Threshold 

Assuming the information in Figure 5 In GraphDuMato's GPU-based GPM method, 

the Optimal Balanced Load Threshold is a key parameter that determines when the 

computational workload is divided between the GPU thread warps through the process of load 

balancing. Efficiently using GPU resources with little overhead is crucial. It is crucial to set the 

threshold to the right value for the system to run at its best with little unnecessary overhead, 

adaptability, and efficient job distribution. When processing needs and workloads change in 

real timeinstantaneously, GraphDuMato can adjust the threshold value accordingly. In 

conclusion, the optimal load balancing threshold in GraphDuMato boosts system performance 

by efficient job distribution among GPU thread warps. 

6. Conclusion and Future work  

To circumvent these issues, GraphDuMato has created GPU-based GPM, which offers 

novel approaches to running GPM algorithms on GPUs. GraphDuMato makes GPU graph 

pattern mining more efficient and scalable by reducing memory requirements, improving 

memory access patterns, limiting divergences, and balancing computational workloads. With 

its warp-centric layout, lightweight load distribution, and DFS-wide subgraph search, 

GraphDuMato is able to mine larger subgraphs more efficiently than prior GPM systems. 

Despite its advancements, GraphDuMato still has certain drawbacks. The dataset and 

subsection sizes affect the processing time of GPM techniques. In spite of being faster and more 

scalable than existing solutions, the study may find that GraphDuMato need some more 

improvements for particular applications or datasets. There may be more advanced capabilities 

that would enhance GraphDuMato's utility in GPM applications that are currently absent from 

the present version. Future iterations of GraphDuMato's load balancing technology will provide 

fine-grained asynchronous task redistribution. Efficiently managing tasks without requiring 

GPU kernel restarts maximizes GPU utilization. The organization is considering utilizing 

GraphDuMato across multiple GPUs to speed up processing, which is particularly important 

for big datasets and complicated graph mining procedures. Future work could also focus on 

implementing a fault resilience layer to guarantee GPM continuity and reduce long runs. These 

updates will make the GraphDuMato GPM platform more robust, scalable, and efficient, 

making it suitable for a wider range of datasets and uses. 
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