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A B S T R A C T  

Advancements in technology, including the Internet of Things (IoT) and Artificial Intelligence (AI), 

greatly impact agriculture. The study investigates the statistical applications of AI-driven robotic 

devices based on the IoT as a basic emphasis. Using manual effort and chemical fertilizers, 

traditional farming can be highly attributed to inefficiency, health problems and environmental 

effects. The paper proposes an AgriBotIQ, a revolutionary platform that uses robotics based on IoT 

to monitor and analyse with accurate participation in plant management. Autonomous robots can 

collect information based on plants and their habitats by using imaging devices and sensors like 

soil moisture, humidity, temperature, and many others. Machine learning (ML) algorithms search 

the database for anomaly detection, threats, and crop trends. To identify the crops that are diseased 

or healthy, ML is integrated with computer vision. The suggested AgriBotIQ also eliminated weeds, 

boosting the output by neglecting unneeded waste and chemicals. The emerging IoTs have allowed 

better remote plant monitoring in more versatile and précised. Overall productivity and protection 

of crops are possible by statistical analysis and real-time notifications of the proactive decision-

making outcomes. By combining IoT and AI, the future agricultural crop security will improve 

greatly. 

 

Keywords: Artificial intelligence, Robotics, Internet of Things, Remote control, Smart sensors, Crop 

Protection, Precision farming.   

1. Introduction 
The UN projects that by 2050, the world's population will have risen to 9.7 billion, 

calling for a 70% increase in food production. The way forward for businesses in this situation 

is to find ways to boost agricultural output while reducing the negative effects of conventional 

farming on the environment. Overuse of chemical pesticides and fertilisers has eroded soil, 

contaminated water sources, and harmed the well-being of humans and animals. The study 

wants new ideas to boost agricultural productivity in a sustainable and environmentally friendly 

way [1]. Maximum production, optimal decision-making, effective use of resources, and 

environmental sustainability are all guaranteed by "smart farming" thanks to objective data 

obtained by sensors. The cornerstone of sustainable agriculture will be methodologies grounded 

in robotic solutions and artificial intelligence [2]. Improved decision-making is possible with 

the use of drones and satellites for remote sensing by closely monitoring soil health, plant 

energy, and various other environmental parameters [3]. Artificial Neural Networks, ANNs, and 
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other contemporary AI problem-solving tools enable us to address unique agricultural issues. 

For farms, "smart farming" means implementing state-of-the-art technology like AI and the IoT, 

which completely changes how things are done [4]. The Internet of Things (IoT), cloud 

computing, and machine learning allow for all-encompassing environmental monitoring. By 

categorizing data, researchers may choose the optimal circumstances for the growth of different 

types of crops [5]. 

By monitoring several agricultural metrics, the Indian-based Fasal IoT platform assists 

farmers in making more informed decisions regarding their operations. An AI-powered engine 

powers the site. The application of AI and data analytics enables farmers to attain future crop 

control and optimum productivity [6]. It takes effort and time to attend to all the requisite 

logistics, such as collecting, sorting, shipping, and marketing crops. Better agro-business 

practices can be achieved using smart agriculture technologies to address and alleviate these 

challenges [7]. Precision farming is one sustainable option; it increases output with precisely 

determined inputs while decreasing the usage of inputs that could be damaging to the 

environment, such as pesticides [8]. To increase productivity, decrease input costs, and improve 

crop yields and quality per worker, a new method called "smart farming" is being implemented 

[9]. The study employs cutting-edge ICT techniques such as the Internet of Things (or IoT 

global positioning systems (GPS), sensors, robotics, drones, actuators, precision machinery, 

and data analytics to ascertain the farmers' needs and put suitable solutions into action [10].  

The grain yield mapping framework includes sensors for moisture, grain volume, GPS 

(global positioning system) antenna and receiver, and travel speed. Crop yield monitoring uses 

grain flow sensors, which use mass and volume flow methods. A yield sensor measures the 

stream rate every one to two seconds during collecting or the harvested amount per unit area 

[11]. With the help of autonomous robots, weeding becomes much more efficient, and less 

pesticide is used. Drones can be used to successfully spray pesticides and monitor crops without 

requiring an excessive amount of human labour. Crop readiness assessment and forecasting 

yields are useful tools to analyze and forecast the quantity of high-quality harvest available for 

sale [12]. Key contributions of the study include,  

✓ To propose the AgriBotIQ approach, an IoT-enabled robotic approach that 

presents a paradigm change by allowing for precise involvement in crop 

management and real-time monitoring and analysis. 

✓ Information about crops and their surroundings is collected using cameras and 

sensors that measure soil moisture and temperature. 

✓ Combining machine learning with computer vision, the proposed approach can 

detect when plants are healthy, sick, or lacking nutrients. 

✓ The protection of crops and total yield can be improved with real-time 

notifications and predictive analytics, which allow for proactive decision-

making.  

✓ The study can minimise negative effects on the environment, make better use 

of the resources, and guarantee future generations have enough to eat by using 

cutting-edge technological solutions. 

The remaining part of the study is organized as follows: Section 2 describes the various 

existing studies related to machine learning, IoT and AI technologies for smart farming; Section 

3 describes the proposed AgriBotIQ approach of how it works on precision agriculture; Results 

and discussion based on improvement in the smart farming is given in section4, and the study 

concludes in section 5 with their future works. 
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2.  Research Methodology 
  

Mesías-Ruiz et al. [13] proposed the importance of AI, ML, and other developing 

technologies in protecting crops from the effects of climate change and meeting the increasing 

need for food. The study showed how crop protection has progressed from its earliest forms to 

its current state and how ML algorithms have helped with precision. Although other creative 

methods may be disregarded, the article discussed emerging technologies such as intelligent 

sensors and AI-based robots for the next generation of crop security systems. Shahab et al. [14] 

proposed smart farming powered by the IoT and using AI and ML algorithms to help improve 

agricultural productivity sustainably, which in turn helps achieve the Sustainable development 

goals (SDGs) set out by the United Nations. The article focused on the most recent findings in 

smart farming, which emphasizes the capabilities of machines and the application of UAVs and 

robots in farming. It also stressed the significance of wireless communication technologies in 

managing sustainable agriculture.  

Ali et al. [15] outlined state-of-the-art IoT and smart farming techniques to maintain 

sustainably produced crops in response to critical global challenges like climate change and 

rising food demand. These technologies made agriculture more efficient, productive, and cost-

effective by keeping tabs on crops, controlling resources, and forecasting yields. Although the 

study provided potential benefits like reduced energy use and improved illness management, it 

can fail to resolve issues like high costs and a lack of technical knowledge. Javaid et al. [16] 

proposed that many agricultural jobs, such as crop cultivation and soil analysis, have become 

much easier to accomplish with recent breakthroughs in AI. With the help of AI, farmers can 

choose the best seeds, plant them at the right times, and apply nutrients so that their crops are 

ready for market with minimal waste of resources. Health monitoring systems are one method 

that allows farmers to see their crops in action right now. However, obstacles such as price and 

lack of accessibility to technology still stand in the way of broad AI implementation in farming. 

Using a full-scale prototype made with IoT and 3D printing technologies, Catota et al. 

[17] proposed a solution to the issue of inefficient agricultural resource management. 

Incorporating 3D printing for sowing and the IoT Arduino Cloud for monitoring showcases 

effective cultivation by providing real-time visualization of factors. Despite showing efficient 

cultivation, limitations may include problems with scalability, cost-effectiveness, and the 

complexity of combining different systems. Riskiawan et al. [18] presented an IoT, AI, and 

LSTM-integrated automated greenhouse environmental control system. Effective climate 

monitoring and management is available. However, there may be drawbacks, such as difficult 

system integration, problems with scaling, and high costs. Some people doubt the system's 

usefulness in real-world scenarios because of its dependence on LSTM training data and the 

ongoing requirement to gather data.  

Parasuraman et al. [19] studied cutting-edge smart agriculture and Internet of Things 

(IoT) technologies to combat pesticide overuse and agricultural diseases. In addition to 

potential problems with efficiency and scalability, integrating different types of automation 

might be difficult. To be prepared for actual use, the suggested IoT plant recognition and 

watering design needs more validation and testing. The authors of the work by Sheron et al. 

[20] proposed a technique for improving robotic object identification accuracy that they named 

projection-dependent input handling (PDIP). Despite their low error rate and excellent 

recognition ratio, there are substantial limitations due to the difficulty of PDIP implementation 
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and possible difficulties in real-world application. Greater testing and validation of the method's 

reliability and adaptability are required in several settings. 

Agricultural crops can only be protected from pests and illnesses if researchers create 

more realistic, efficient, and long-lasting robotic systems based on the Internet of Things. Table 

1 summarises pertinent research possibilities. 

Table 1. Research gaps in the related works 

Research gap Description 

Constrained Research on 

Integration 

Many surveys only discuss IoT, AI, and robots separately without delving further into how 

these technologies work together to safeguard crops. 

Absence of Validation in 

the Real World 

Due to a lack of empirical validation of suggested solutions in actual agricultural contexts, 

additional research is required to confirm their efficacy on farms. 

Flexibility and scalability Farm size and location must be considered when considering the potential applications of 

IoT-based robotic systems in agriculture. 

Efficiency and economy Little has been said about the practicality and cost-effectiveness of establishing and 

maintaining IoT systems, particularly for smallholder farmers. 

The adaptation and 

acceptance of users. 

To grasp the adoption process, one must put oneself in the farmers' shoes and try to 

comprehend their difficulties. Future research should focus on expanding user-centric 

design. 

 

3. Proposed Methodology 

This device is groundbreaking in the agricultural field because AgriBotIQ solves all the 

problems farmers face today. AI and the ubiquitous Internet of Things allow AgriBotIQ to 

facilitate precision agriculture by providing real-time analysis, tracking, and management of 

crops. It can benefit many fields, such as sustainable agriculture, remote monitoring, pest 

identification, and data-driven decision-making. By helping farmers to reduce the use of toxic 

pesticides and improve the utilization of current resources, AgriBotIQ offers a significant effect 

in the battle against sustainable agriculture. Farmers can find important information about their 

land, crops, and surroundings with this instrument. This data will allow them to make better 

judgements and run their business more efficiently. And when it comes to AI, IoT, and robotics, 

AgriBotIQ is way out in front, paving the way for all sorts of exciting new developments in the 

farming industry. Contemporary farmers concerned about their influence on the environment, 

efficiency, and productivity should purchase an AgriBotIQ. 

a. AgriBotIQ system architecture 

                         

Figure 1. Overall structure of AgriBotIQ system 
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The aforementioned method for crop protection is based on substantial study; the goal 

is to provide a persuasive and practical answer. The proposed layout uses state-of-the-art 

technology and various data-gathering techniques, as seen in Figure 1. The IoT is the starting 

point of the digital revolution for farming with respect to weather monitoring and irrigation. 

Soil temperature, moisture, and humidity are the three variables that these sensors measure in 

real-time. In addition, AI techniques are combined with visual signs and patterns to detect plant 

diseases early on, allowing for faster treatment. As a component of production evolution, 

studying the development and change of crops is crucial. The many components of the AI and 

robotics-based crop protection system work together to improve farming:  

Data collection module: The system uses various sources to generate insights, including 

weather predictions, soil sensors, satellite imagery, and digital bug traps. With this much data, 

we can foretell when weeds will sprout, pests will attack, diseases will spread, and even the 

weather.  

This module aims to teach students how to create and understand machine learning 

models so that they can programmatically analyse data and get valuable insights. The 

technology deciphers the results of ML models and delivers actionable insights to aid in 

decision-making.  

The decision-making module uses AI technologies to assess the collected data and 

select optimal crop protection strategies. Several aspects are taken into account when assessing 

the efficacy of pesticide applications. These include the crop type, its developmental stage, the 

severity of the insect, weed, and disease, and underlying ecological and risk factors. 

Furthermore, we consider possible increases in pesticide resistance and legislative limitations.  

Autonomous robots with sensors and cameras can use this technology in their robotic 

modules. We can create the most efficient crop protection processes conceivable by teaching 

these robots to detect and eradicate pests, diseases, and weeds using AI algorithms. The 

monitoring module, which employs AI to make necessary adjustments in real-time, can track 

crop protection techniques' effectiveness. Maintaining this awareness guarantees peak 

performance and permits prompt actions whenever necessary.  

The user interface module offers a user-friendly platform for stakeholders, including 

agricultural scientists, farmers, and others, to communicate with one another. Customers can 

enter data through this interface to tailor the results to their requirements. The system's 

recommendations and outcomes are displayed.AI-powered robotic crop protection devices 

provide more effective crop protection with less chemical input. The system provides data-

driven suggestions for crop protection strategies to encourage sustainable agricultural practices 

and maximise crop yields. 

 

b. AI-based crop protection  

As mentioned above, the ant colony optimisation (ACO) algorithm is one of the 

AI techniques that the AgriBotIQ software can employ. Optimization of routes and resource 

allocation are two examples of problems that can benefit from ACO's metaheuristic 

optimization method when combined with more conventional ML and DL techniques. In the 

subsequent AgriBotIQ cases, for instance, ACO may prove useful: 

Given that AgriBotIQ may have to travel across fields to gather data or apply treatments 

in a farming context, enhancing its route-planning capabilities is crucial. ACO, which considers 

distance, terrain type, and obstructions, can help find the best routes for AgriBotIQ. By leaving 

pheromone trails along possible paths that the ant colony traverses, an ACO may direct 

AgriBotIQ to its most efficient channels. 

As a result of scarce assets (time, energy, and pesticides), AgriBotIQ has to take every 

precaution to save its crops. In order to optimize resource allocation, ACO constantly assigns 

resources to tasks or places according to the way successfully they accomplish the targeted 
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results. Monitoring pheromone trails generated by synthetic ants might help AgriBotIQ 

determine the optimal locations to sprinkle irrigation or pesticide. 

The best crop protection may be provided by AgriBotIQ if it looks for pests, monitors 

the crop's circumstances, and applies remedies at preset intervals. Prioritize tasks according to 

the crop's stages of growth, the environment, and available labour. Apply ACO to find the best 

times and sequence to complete each task. According to ACO, AgriBotIQ can quickly adapt to 

new scenarios by constantly studying and changing pheromone traces linked to varied 

workforce schedules. 

Protecting crop operations might be made more efficient and successful with the help 

of ACO, provided AgriBotIQ could optimize route strategy, resource allocation, and task 

scheduling. The behavior of the algorithm that determines the paths taken by the colonies of a 

plant protection robot will be examined during this study using the ant colony approach. 

Assume the ant's code identifier is 𝑎 (𝑎 = 1,2,3 … . . 𝑛) and the node it has traversed is 

𝑡𝑎𝑏𝑢𝑎 (𝑎 = 1,2,3 … … 𝑛) for recording purposes. The ant colony's movements may update the 

𝑡𝑎𝑏𝑢 table in real-time, helping it make informed judgments about what to do next. The 

pheromones concentration on the line between nodes 𝑖 and 𝑗 at time 𝑡 is 𝜏𝑖𝑗 , given that m is the 

total population of ants and 𝑖𝑠𝑑𝑖𝑗 (𝑖, 𝑗 = 0,1, … . 𝑚 − 1). Starting with a uniform pheromone 

concentration, the program randomly places the ants. The ant's chance of hopping from a single 

node to the next at any particular moment is 0: 

𝑄𝑖𝑗
𝑎 = {

𝜏𝑖𝑗
𝛼 𝜂𝑖𝑗

𝛽
(𝑡)

∑ 𝜏𝑖𝑗
𝛼 (𝑡).𝜂𝑖𝑗

𝛽
(𝑡)𝑎𝜖𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑎 ,𝑗𝜖𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑎,0,𝑜𝑡ℎ𝑒𝑟

       (1) 

In equation (1), out of all the variables, allowed 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑎 = {𝑑 − 𝑡𝑎𝑏𝑢𝑎} denotes all 

the walking nodes from which the ants can choose. D stands for the combination of nodes. 

𝛼 represents the information heuristic factor, and its determination primarily depends on the 

ants' ability to work together in a group. 𝛽 reflects the expectation heuristic factor. 𝜂𝑖𝑗 denotes 

the heuristic function, typically obtained through 𝜂𝑖𝑗 =
1

𝑐𝑖𝑗
. While ant path planning is 

underway, many pheromones are created. Therefore, to prevent information redundancy, 

updating the data after the planning process is finished is necessary. The intended data for route 

(𝑖, 𝑗) is modified at the moment 𝑡 +  𝑛 to the following equation (2), 

𝜏𝑖𝑗(𝑡+𝑚)=(1−𝜌)×𝜏𝑖𝑗(𝑡)∆𝜏𝑖𝑗(𝑡)

∆𝜏𝑖𝑗(𝑡)=∑ ∆𝜏𝑖𝑗
𝑎 (𝑡)𝑛

𝑎=1
}                                (2) 

The volatile component of the pheromone is denoted by 𝜌 ∈  (0, 1), and the 

pheromone increment is denoted by ∆𝜏𝑖𝑗(𝑡). Three distinct models can be derived from various 

methods of updating information. One way to represent the periant system model is given in 

below equation (3) as,  

∆𝜏𝑖𝑗
𝑎 = {

𝑀

𝐿𝑎
, 𝑡ℎ𝑒 𝐴𝑡ℎ𝑎𝑛𝑡 𝑤𝑎𝑙𝑘𝑠 𝑏𝑦 𝑖𝑗

0, 𝑜𝑡ℎ𝑒𝑟
  

∆𝜏𝑖𝑗
𝑎 = {

𝑀

𝑐𝑖𝑗
, 𝑡ℎ𝑒 𝐴𝑡ℎ𝑎𝑛𝑡 𝑤𝑎𝑙𝑘𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡 𝑎𝑛𝑑 𝑡 + 1𝑖𝑗

0, 𝑜𝑡ℎ𝑒𝑟
    

                                                                                                                                      (3) 

 

The model of an ant colony can be stated as the following equation (4) as,  

 

∆𝜏𝑖𝑗
𝑎 = {

𝑀, 𝑡ℎ𝑒 𝐴𝑡ℎ𝑎𝑛𝑡 𝑤𝑎𝑙𝑘𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡 𝑎𝑛𝑑 𝑡 + 1𝑖𝑗

0, 𝑜𝑡ℎ𝑒𝑟
      (4) 

The entire node distance is represented by 𝐿𝑎, and the pheromone is denoted by 𝑀. The 

model formula shows that the periant system revises the pheromone after each cycle, while the 
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ant density and population systems update it after each step. Consequently, the periant system 

model is the most trustworthy. 

The plant protection robot's route planning follows a procedure comparable to an ACO 

by its fundamental premise. The first step in the process was positioning the plant protection 

robots in the optimal working position. The ant-algorithm approach used the starting point to 

calculate the planning path. By running simulations, we can determine the optimal routes for 

our plant protection robots. The initial plant protection robot can be directed to follow the 

second crop protection robot's path if it is the quickest, and the fastest of the m paths can be 

chosen as the best way to reach the target site. The plant security robot group's route planning 

is now a reality thanks to analogies. 

 

c.  IoT-based crop protection 

Soil, microclimate, and especially crop sensing have all been enhanced by the Internet 

of Things (IoT), which has caused a sea change in crop tracking from a qualitative, experience-

based process to a quantitative, data-driven one. Thanks to technologies built on the Internet of 

Things, farmers can now track the growth and health of their crops with pinpoint accuracy. The 

ability to monitor pest attacks and plant illnesses in real-time is another benefit it provides to 

farmers. Internet of Things (IoT) tagged sensors provide researchers and farmers with valuable 

real-time data for smart control of crop cultivation, irrigation, fertilizer application, and plant 

environment.  

Network of Things (IoT) smart crop tracking systems rely on field-placed sensors to collect 

data on various environmental factors, such as soil moisture, temperature, humidity, and 

nutrient levels (shown in Fig.2). A common networking feature across these sensors allows 

real-time data transfer to a central cloud-based platform. After collecting data from these 

sensors, data analytics tools like machine learning are used to learn about the crop's growth 

rate, prospective yield, and overall health. This data can help farmers with irrigation, insect 

control, and harvesting decisions.  

        

Figure 2. IoT-based smart sensors application for crop production 

When administrators and farmers use wireless sensor technology, they may be notified 

when equipment fails and begin troubleshooting immediately.  

Implementing an automated repair tool can result in energy savings, faster data processing, and 

better actuation. Modern agricultural practices are seeing the rise of unmanned aerial systems 

(UAS) connected to the Internet of Things (IoT). These systems enable farmers to capture aerial 
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images of their fields in real time while streamlining data processing and storage. Several 

agricultural environmental characteristics can be effectively monitored using IoT-based 

systems. These include air temperatures, light levels, soil moisture, moisture, CO2 

concentration, pH levels, and water usage for crop efficiency. 

 

4. Results and discussion 
The dataset details the methods used to cultivate crops for every region, season, and 

kind of soil [21]. The data encompasses a wide range of crops, including cotton, onions, potato, 

wheat, rice, ragi, groundnuts, sugar cane, and banana, as well as pertinent agricultural and 

environmental aspects. Important characteristics covered by the dataset include cropping period 

(kharif, rabi, or entirety year), place of residence (state), cultivated area, type of soil (e.g., 

alluvial ground, black soil), chemicals application rates (high, low, an average), soil pH, 

ambient temperature (low, high, average), use of fertiliser levels (low, high, an average), price 

of crops, and amounts of rainfall (high, low, average). 

 

a. Recognition ratio 

The accuracy rate, or recognition ratio, measures how well the AgriBotIQ system 

distinguishes between healthy, diseased, or nutrient-deficient plants. It is the proportion of 

plants that the system properly identified relative to the overall number of plants that were 

evaluated. Mathematically, recognition ratio (RR) is referred to as the following equation (5), 

𝑅𝑅 =
𝑡𝑃

𝑡𝑃+𝑓𝑃
                                               (5) 

In equation (5), the total number of plants that the AgriBotIQ system accurately 

classified as healthy, diseased, or nutrient-deficient is called 𝑡𝑃 (True Positives). The number 

of plants that the AgriBotIQ system mistakenly deemed healthy, diseased, or nutrient-deficient 

is called 𝑓𝑃  (False Positives).  

The AgriBotIQ system must maximize true positives and decrease false positives to provide 

reliable findings. A false positive is a situation in which the system mistakenly labels a plant in 

good health as diseased, nutrient-deficient, or reverse. But a true positive occurs when the 

system correctly diagnoses the plant's health.  

 

Figure 3. Analysis of recognition ratio based on the proposed AgriBotIQ 

After calculating the recognition ratio, agricultural researchers and specialists can 

assess how the AgriBotIQ system predicts a user's nutritional and health status. A higher 

recognition ratio enhances the efficiency and lifespan of agricultural production (Fig. 3), 

proving the system's effectiveness and dependability in managing crops and protection. 

b. Processing Time 
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The time indication illustrates the median length for the AgriBotIQ technology to 

analyze the data, find trends, and provide valuable insights. Very quickly and efficiently, the 

system completes the work measured by it. The method described in equation (6), which shows 

the sum of all execution times divided into the total of all observations, can be used to estimate 

the mean time for processing (AT) of the AgriBotIQ system: 

 

AT =
∑ 𝐷𝑖

𝑡
𝑖=1

𝑡
                                                           (6) 

Equation (6) shows that the total number of measurements is represented by 𝑡, and that 

each observation, indicated as 𝐷𝑖, requires iterations of the AgriBotIQ technology. Much work 

goes into each observation, including collecting data, cleaning it, identifying features, 

identifying trends, and producing insights. The data collected by the AgriBotIQ system may be 

examined via various methods such as artificial intelligence (AI), machine learning (ML), and 

others. To provide growers and agricultural professionals with timely insights, the AgriBotIQ 

platform may use efficient algorithms and appropriate system architecture to decrease the 

median processing time.  

 

Figure 4. Processing time variations for different tasks based on the AgriBotIQ system 

Reduced processing times improve cultivation and protection, as seen in Figure 4. This 

allows for quicker decision-making and reactions as crop conditions fluctuate. Scientists and 

engineers may be able to render AgriBotIQ smarter and more affordable if they monitor the 

median time measure closely. Improved farming methods that are friendlier to the environment 

will develop from that amount. 

c. Error rate 

An error rate provides a reliable indication of the number of times the AgriBotIQ 

system makes faults in crop analysis and monitoring. The manner in which the system works 

demonstrates whether it can distinguish between healthy, damaged, and nutritionally deficient 

crops. We may find the error rate (ER) by dividing the overall number of misidentifications by 

the total number of occurrences, as stated in Equation (7). 

𝐸𝑅 =
𝑓𝑃+𝑓𝑁

𝑡𝑃+𝑓𝑃+𝑓𝑁+𝑡𝑁
                                  (7) 

The acronym for the rate with which a specific state, like "healthy," "sick," or "deficient 

in nutrients," is correctly identified is "𝑡𝑃" in Equation (7). Can the state get the absence label 

correct some proportion of the time? True Negatives, abbreviated as 𝑡𝑁, have that meaning. 

"Fake positives," or 𝑓𝑃 , is the frequency with which an incorrect diagnosis is produced when 

none exists. 

When a condition is mistakenly thought to be absent when it is present, this is called 

"False Negative," or 𝑓𝑁. A false positive occurs when the AgriBotIQ technology mistakenly 
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identifies abundant nutrients in healthy plants or excess nutrients in unhealthy plants. Such an 

occurrence occurs during the assessment and monitoring of crops. A false negative occurs when 

the system mistakenly labels a plant in good health as ill or lacking nutrients, even when the 

plant is perfectly OK. 

According to the study, the AgriBotIQ system may be evaluated for accurate and wrong 

identifications by determining the mistake rate. Fig. 5 shows that a system with reduced error 

rates is more trustworthy and accurate regarding crop tracking and assessing activities. 

Researchers and developers may want to examine and tweak the error rate parameter to improve 

the AgriBotIQ system. Based on this data, better techniques for crop preservation and 

management will be accessible. 

 

 

Figure 5. Analysis of error rate in AgriBotIQ system 

5. Conclusion 
Finally, AgriBotIQ demonstrates how internet-connected robotic devices powered by 

artificial intelligence (AI) could revolutionize farming by guaranteeing a consistent harvest. 

Smart sensors and AI allow AgriBotIQ to offer constant crop monitoring and precise care. 

There will be less need for chemical fertilizers and agricultural labor, and production can be 

increased with little harm to the environment thanks to this technique. As a group, farmers may 

use machine learning and actual time alarms to guarantee food safety for future generations. To 

make farming more profitable and less detrimental to the surroundings, research suggests that 

the IoT platform, automation, and AI could completely change the industry. Modern technology 

comes with a hefty price tag, and there are many more other factors to consider, such as the 

need for extensive technical support and laws regarding cybersecurity. Studying methods to 

solve agronomic problems in the future should centre around building better AI algorithms, 

bringing costs down, and creating more trustworthy systems. The three sectors—government, 

industry, and academia—must collaborate to swiftly adopt these revolutionary technologies if 

the food industry remains healthy. 
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