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A B S T R A C T  

A new method of farm management that makes use of cutting-edge information technology is 

known as precision agriculture management. By reducing the waste of water, fertilizers, pesticides, 

fuel, and other types of agricultural inputs, as well as by optimizing agrarian income and limiting 

adverse effects on the environment, precision agriculture management seeks to boost agricultural 

output and quality. Traditional agricultural management methods often lead to inefficient use of 

resources, higher environmental impacts, and decreased crop yields. Finding efficient, scalable, and 

accurate ways to track important agricultural variables over large regions is a huge challenge. This 

paper proposes a new framework called ARS-DLConvNN to handle these issues and enhance the 

management of agritech and precise agriculture. This framework Integrates High-Resolution 

Agricultural Remote Sensing (ARS) data and Deep Learning (DL) methods like Convolutional 

Neural Networks (ConvNN). This approach uses Convolutional Neural Networks (CNNs) and 

Long Short-Term Memory (LSTM) network specifically designed to handle hyperspectral data 

collected from UAVs and multi-spectral satellite photos. These algorithms can assess crop stress in 

real-time, provide recommendations on effectively managing water, fertilizer, and insects, and learn 

to estimate weight and yield. It will be quite easy to see how the proposed method improves 

agriculture management effectiveness and harvest yields. Improved agricultural management 

efficiency and crop production were striking when using the suggested deep-learning remote 

sensing system.  On average, crop yields increased by 18% compared to traditional methods, 

according to field trials in various locations. decrease output. With a 92% success rate in detecting 

crop illnesses early and an 89% success rate in forecasting water stress, the model allowed for 

prompt treatments.  

 

Keywords: Remote Sensing, Deep Learning method, Convolutional Neural Network, Precision 

Agricultural Management, Long Short-Term Memory Network. 

1. Introduction 
Agriculture is crucial in the global economy since it produces food and fibre, which are 

humanity's fundamental requirements. The last century's Green Revolution and other 

technological advancements have revolutionized farming [1]. Even though half of the global 

population has moved into cities or industrialized, half still work in agriculture. For instance, 

in India, most people are still involved in agriculture [2]. According to the Food and Agriculture 

Organization (FAO), the demand for high-quality, sustainably produced food is expected to 
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increase by 70% by 2050 [3]. Given the difficult circumstances in agriculture, it is crucial to 

closely observe the development and condition of crops in different areas and environmental 

conditions, using different time intervals and for diverse objectives [4]. Simultaneously, climate 

change, urbanization, and excessive agricultural exploitation will significantly reduce the 

amount of arable land suitable for food production, resulting in severe challenges in maintaining 

a balance between production and consumption [5]. Any illness that induces significant 

morphological and physiological alterations in crop plants can be considered an appropriate 

candidate for remotely sensed detection. In the late 1920s, a conventional film-based camera 

was employed from an aeroplane to obtain aerial images of cotton fields affected by cotton root 

decay, a soil-borne infection caused by the fungus Phymatotrichopsis omnivorous [6]. An 

effectively crafted insurance scheme might incentivize farmers to make profitable purchases, 

such as in crops and fertilizer, that have the potential to enhance their revenue under normal 

circumstances but are susceptible to adverse weather conditions [7].  

Precision Agriculture (PA) uses extensive data sources and sophisticated analytical 

tools related to crops and the environment. Its goal is to help farmers apply the proper rate at 

the right moments and places so they can manage their fields successfully and make educated 

judgments. The ultimate objective is to achieve economic and environmental goals [8]. Remote 

Sensing Systems is an interdisciplinary scientific field encompassing various disciplines, 

including Spectroscopy imaging, gadgets, pictures, satellite taking off, electronics, and 

communication [9].  One PA technology, remote sensing (RS), makes it easy and affordable for 

farmers to track the condition of their crops and soil at different points in the production process. 

Using it as a warning sign can help find issues before they escalate, giving you more time to 

fix them [10]. Deep Learning prioritizes the complexity of the model's structure, emphasizes 

the significance of acquiring features, and suggests several methods to improve the teaching of 

more advanced and efficient features [11]. An increasing number of agricultural scientists are 

focusing on utilizing deep learning for image-based observations in farming, including tasks 

like land mapping, crop classification, biotic and abiotic stress monitoring, and predicting crop 

production [12].  

 

 

 

 

 

 

 

 

    Figure 1. Remote sensing process                           Figure 2. Applications of Deep  

            in the agricultural land                                 learning in Agriculture 

 

The main contribution of this paper is 

✓ It detects problems, including water stress, nutrient deficits, and bug infestations, with over 

90% accuracy, which helps farmers with trouble spotting the early signs of crop stress. 
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✓ The proposed ARS-DLConvNN approach limits of conventional agricultural management 

techniques can be overcome and crop health and field conditions can be monitored at high 

geographical and temporal resolutions. 

✓ This proposed framework allows for accurate resource allocation and intervention, 

maximizing output in changing climate conditions. 

Figure 1 shows the process of the remote sensors on agricultural land. The uses of DL 

in farming are illustrated in Figure 2. This study investigates how deep learning in remote 

sensing might significantly improve precision agriculture management in agritech. This study's 

goal is to create a highly accurate system that uses excellent-quality satellite and drone photos, 

advanced neural networks, and precise algorithms to track crop conditions, predict yields, 

identify abnormalities, and provide targeted actions. The proposed ARS-DLConvNN approach 

can increase agricultural productivity while improving sustainability by optimising water, 

fertilizer, and pesticides. Also, bridging the gap between cutting-edge research and practical 

application can help level the playing field regarding access to high-tech agricultural equipment 

by making data collected via remote sensing available to farmers through smartphone apps. 

2. Literature Survey 
In their study, Karunathilake et al. [13] investigated cutting-edge developments in PA, 

emphasising the use of big data and the IoT. The most recent successes, failures, and prospective 

developments in innovative farming and precision agriculture are summarised in this review 

article. The article delves into the current state of PA using cutting-edge tech like sensors, 

unmanned aircraft, and machine learning. In addition, these technology's adaptability to various 

farming settings can limit their applicability in some regions. The only way to address these 

issues is to create educational and training programs that teach farmers how to use this 

technology effectively. 

A data query system was integrated by Martínez, N. L. et al. [14] to facilitate the 

automation of tasks, decision-making, and ordinary questions by users and farmers alike. The 

proposal showcased a system that ensured service connectivity and was tested on two smart 

agricultural platforms in Europe, DEMETER and AFarCloud. The suggested framework is 

tested and verified using a neural network. Accurate forecasts regarding the timing of harvesting 

and packing foraging legume crops utilized as cow feed are produced by the neural network, 

which is trained and tested using STSDaMaS. Analyzing how neural networks are trained and 

run shows they are quite good at answering complex spatiotemporal semantic queries.  

The possible advantages of precision agricultural technology in developing 

environmentally conscious and sustainable agriculture were investigated by Gawande V. et al. 

[15]. Less waste and less environmental impact are the results of precision farming techniques 

that allow for the perfect distribution of resources like water, fertilizer, and pesticides. Precision 

farming equips farmers with up-to-the-minute information that boosts crop yields through 

better management and informed decision-making using cutting-edge technology such as GPS, 

GIS, remote sensing, and data analytics. But it's expensive and doesn't give you enough 

knowledge, expertise, or access to necessary technology. 

Aiming to evaluate WSNs' capacity to manage growing agricultural workloads, Atalla 

S. et al. [16] set out to do just that. The assessment will include two cases: farms that grow olive 

trees and horse training facilities. This article introduces a new way to classify agricultural 

Internet of Things apps based on several parameters. Further, it presents criteria for assessment 

that may be used to examine how well scenario types (stationary and mobile) work on 

6LowPAN networks. In two agricultural scenarios, the study models and simulates the 

functioning of the routing protocols and 6LowPAN for networks with low power and loss (RPL) 
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using COOJA, a practical Wireless Sensor Network (WSN) simulator. There is a risk that the 

suggested framework's real performance in precision farming applications will not be faithfully 

reflected in the simulated findings using this methodology.  

The present state of UAV technology for directing PA activities on smallholder farms 

was evaluated in a thorough literature review by Gokool S. et al. [17]. Unmanned Aerial 

Vehicles (UAVs) have evolved into powerful instruments for crop monitoring and PA method 

guidance. Improved agricultural productivity and more efficient use of vital resources could be 

possible with this technique. Results from these studies show that UAVs are primarily employed 

for crop mapping, fertilizer management recommendations, and crop growth monitoring. 

However, our study's findings may not be generalizable because they were based on subjective 

criteria and procedures used to compile and evaluate the data.  

Santos L. et al. [18] comprehensively examined numerous deep-learning 

methodologies in diverse agricultural contexts, including disease identification, fruit/plant 

classification, and fruit counting. The paper examines the models utilized, data sources, 

research performance, hardware, and the possibility of real-time applications to explore the 

possibility of integration with autonomous robotic platforms. The primary drawback may lie in 

the hardware limitation, as these systems predominantly rely on high-performance GPUs that 

necessitate significant power consumption. 

Krishnababu, M. E. et al. [19] highlighted how AI and IoT transform farming methods 

as they examine PA's history and the present situation in India. Better crop and soil monitoring, 

disease diagnostics, and yield prediction are all made possible with the use of AI's forecasting 

and machine-learning models, which in turn improve decision-making. Smarter resource 

management and operational efficiency are made possible by the Internet of Things (IoT), 

which improves these capabilities by providing the framework for data collection and real-time 

monitoring. Despite the enormous promise of these technologies, several important obstacles 

must be overcome for their successful deployment, including high costs, complex technological 

issues, and socioeconomic inequality.  

Issa H. et al. [20] created a thorough framework that examines the factors influencing 

AI readiness and identifies important strategic components that might assist agritech companies 

in effectively managing their preparation for AI implementation. We utilize a mixed-methods 

strategy to gather data, employing 236 e-surveys and conducting 25 interviews at a very 

influential AgriTech conference. Collecting data from a very influential conference in the 

AgriTech sector restricts the sample size for quantitative and qualitative inquiries. 

In their literature review, Velusamy et al. [21] summed up the best practices for 

employing UAVs and other unmanned aircraft to precisely monitor crops and manage pests in 

agricultural fields. When using UAVs for early disease detection in agriculture, the researchers 

comprehensively review and compare the available data. Along with the Quality of Service 

(QoS), this study investigates using UAV, satellite, and other forms of remote sensing for illness 

diagnosis. Tracking procedures and UAV operations are hindered by inclement weather, which 

includes snowfall, cloud cover, fog, and precipitation. 

Using a deep learning predictor with a progressive two-level decomposition structure, 

Jin, X. B. et al. [22] improved the accuracy of the weather-related predictions made by the PA 

IoT system. First, divide the weather data into four sections. Then, train GRU network to sub-

predict one section. We integrated the outputs from GRUs to acquire the findings for a medium 

and long-term predictions. A more complex model requiring more processing power may result 

from using a two-level segmentation and integrating many GRU networks. 
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An Empirical Mode Decomposition (EMD) approach and a Gated Recurrent Unit 

(GRU) network are combined in a hybrid deep learning predictor [23] developed by Yang, N. 

X., et al. First, to better understand the climatic data, apply the EMD approach and partition it 

into different groups based on frequency. Next, each group's training uses a GRU network as a 

sub-predictor. After adding all the outputs from all the GRU networks, this study gets the final 

forecast. Testing the suggested model with weather data collected by an agricultural IoT system 

proved its viability. The reliability of the forecast depends on a mountain of high-quality 

climatic data. Too noisy, insufficient, or inconsistent data can make the EMD the CNN and 

GRU models that follow less accurate and inefficient.  

3. Proposed Methodology 
a. Dataset Explanation 

Achieving optimal production and long-term viability in farming relies heavily on 

accurate crop recommendations. The importance of using thorough statistics, particularly those 

about soil composition, is growing as farmers and agricultural specialists delve further into 

data-driven approaches. There is a variety of information in the dataset that is being considered, 

including levels of important components like phosphorus, potassium, and nitrogen, as well as 

environmental factors like humidity, temperature, pH value, and rainfall. It is essential to 

comprehend and analyse this dataset to make sound decisions that could improve agricultural 

output, resource management, and general crop health. Using soil data to inform crop selection 

is crucial in contemporary farming. Profitability, sustainability, crop productivity, managing 

resources, and climate resistance can all be enhanced by include information on the soil and 

other environmental factors in large datasets. Adopting data-driven decision-making, the basis 

of efficient crop recommendation systems, can lead to a better agricultural future. 

b. ARS-DLConvNN Framework in Precision Agricultural Management 

 

 

 

 

 

 

 

 

 

 

Figure.3 The overall process of the ARS-DLConvNN method 

A high-level view of the proposed ARS-DLConvNN method for managing precision 

agriculture is shown in Figure 3. This system is fed data from satellites, as well as ground 

sensors and unmanned aerial vehicles (UAVs). Improving, standardizing, and fixing the 

obtained raw images are all part of the preprocessing steps. The next phase features extraction, 

which uses CNNs for spatial evaluation and LSTM networks for temporal analysis. The 

conventional approach feeds these combined spatial and temporal features into comparative 
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analytics algorithms. The ARS-DLConvNN method uses high-resolution images and 

sophisticated machine-learning algorithms to enhance production, environmental 

responsibility, and farmers' decision-making.  

 

b.1 Data Collection and Preprocessing 

Satellite photographs (such as those from Sentinel-2 and Landsat) and sensor-equipped 

unmanned aerial vehicles (UAVs) provide most of this system's input data. This study adds 

readings from sensors and field evaluations to this data to ensure that crop condition, soil 

moisture, nutrient levels, and insect infestations are accurately assessed. 

Several crucial preprocessing operations are carried out before the guarantee of correct 

and consistent initial data is analysed. These steps include correcting images, normalizing data, 

and using augmentation techniques. 

b.1.1 Methods of Image Correction 

Minimizing the influence of the atmosphere and the sensor is essential for accurate 

scene capture. One way to improve the accuracy of surface reflectance data is to use FLAASH 

( Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) to correct hyperspectral 

photographs for atmospheric impacts. Surface reflectance 𝜌 can be obtained by Eqn 1. 

𝜌 = (
𝑅−𝑅𝑎

𝑇𝑑𝑇𝑢
) − (

𝑆𝐴(𝑅−𝑅𝑎)

𝑇𝑢(𝑇𝑑+𝑆𝐴𝑇𝑢)
)                                                 (1) 

where 𝑅 is the measured radiance at the sensor, 𝑅𝑎 is the path radiance. 𝑇𝑑 is the 

download transmittance, 𝑇𝑢  is the upward transmittance and 𝑆𝐴 is the spherical albedo of the 

atmosphere. 

b.1.2 Normalizing the Data:  

This ensures that data from various sources or acquisition periods are consistent and 

comparable. Some of the key techniques are  

i) Standardization 

Standardization involves adjusting the data to have a mean of zero and a standard 

deviation of one to make disparate datasets comparable. 

ii) Min-Max Normalization 

It includes scaling the data to a specified range, typically [0, 1] or [-1, 1]. 

iii) Histogram Matching 

It ensures consistency between images by adjusting their intensities to match a 

reference image's histogram. 

b.1.3 Data Augmentation  

Data augmentation aims to intentionally increase the size and variability of the training 

set to enhance machine learning models' resilience and efficacy. Reversing and rotating satellite 

photos of farming areas to produce a more comprehensive and diverse crop classification model 

training dataset. Random noise is added to images to strengthen models against errors found in 

the actual world. 
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The thorough procedure of collecting and preparing data guarantees that the models 

used for deep learning are provided with superior quality, varied, and precisely labelled data to 

facilitate efficient training.  

 

b.2 Development Model 

The primary objective of the proposed ARS-DLConvNN method entails creating deep 

learning models specifically designed for examining agricultural data in terms of space and 

time. High-resolution image analysis is the primary goal of CNN development and training. 

From this data, they derive important geographical features that reveal soil moisture, nutrient 

levels, pest infestations, and crop conditions. LSTM networks search for patterns and variations 

in crop development using time-series data collected from sensors on the ground and aerial 

photography. The labelled dataset is used to train the CNN and LSTM models extensively. 

Conventional measures, including F1-score, overall accuracy, recall, and precision, are 

employed to assess their efficacy on an independent validation set. By integrating the 

capabilities of CNN for extracting features and LSTM for pattern analysis, this dual-model 

approach enables a comprehensive comprehension of crop circumstances and growth 

dynamics.  

The proposed ARS-DLConvNN framework uses two deep learning architectures, CNN 

and LSTM networks, to conduct spatial and temporal analysis of agricultural data.  

b.3 CNNs for the Extraction of Spatial Features: 

CNNs are a special kind of DNN that do very well with visual and other spatial data. 

Within the framework of ARS-DLConvNN, CNNs are developed and trained to process high-

resolution pictures of hyperspectral and multispectral remote sensing data collected from UAVs 

and satellites. Here, CNN mainly extract crucial spatial features from images depicting crop 

health, soil moisture, nutrient availability, and insect infestation. The patterns and connections 

between each pixel in the input photos are analyzed using CNNs built to acquire these spatial 

properties continually. Eqn 2 shows the convolution operation of the image. 

(𝑃 × 𝐶)(𝑎, 𝑏) = ∑ ∑ 𝑃(𝑎 + 𝑥, 𝑏 + 𝑦) × 𝐶(𝑥, 𝑦)  
𝑗
𝑦=−𝑗

𝑖
𝑥=−𝑖                                (2) 

where 𝑃is the input picture, 𝐶 is the convolutional kernel (filter). 𝑎, 𝑏 are the spatial 

coordinates of the output pixel, and 𝑖, 𝑗 are the dimensions of the kernel. 

After that, these map features are processed by pooling layers that reduce the sample 

size of the feature maps without erasing any crucial data. The pooling operation is done by Eqn 

3. 

         𝑃𝑜(𝑎, 𝑏) = 𝑚𝑎𝑥𝑥=0
𝑝−1

𝑚𝑎𝑥𝑦=0
𝑞−1

 𝑃(𝑎 + 𝑥, 𝑏 + 𝑦)                                     (3) 

where 𝑝 × 𝑞 refers to the pooling window size. 

The final outcomes, such as regression results or classifications, are produced by all 

the connected layers near the very end of the CNN by combining and processing the learned 

features. The CNNs are trained on labelled remote sensing data to precisely recognize and 

extract spatial information related to crop and field conditions. In-depth information about crop 

health, nutrient deficits, moisture content, and pest infestations throughout agricultural areas 

can thus be obtained thanks to the framework's ability to do so. 
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b.4 Temporal Analysis Using Long Short-Term Memory (LSTM) Networks: 

 

 

 

 

 

 

 

 

 

Figure.4 The basic structure of LSTM 

The LSTM network cell, a fundamental element of the ARS-DLConvNN framework 

for periodic agricultural data analysis, is depicted in Figure 4 in its basic form. The LSTM cell 

may selectively save or discard data from earlier time steps because of its specific architecture, 

which consists of a cell state and specialized gates (forget, input, and output gates). The 

sequential nature of time series data makes it particularly well-suited for analysis by LSTM 

networks. Because of their superior capacity to understand long-term correlations in sequential 

data, the LSTM subset of recurrent neural networks is ideal for assessing complex temporal 

patterns in agricultural occurrences such as crop development and weather impacts. Long short-

term memories (LSTMs) are perfect for dealing with the enormous datasets observed in modern 

precision agriculture and eliminating the demand for human feature engineers because they 

automate the feature extraction procedure from raw temporal data.  Long short-term memories 

(LSTMs) excel at pattern recognition and prediction.  

b.5 Predictive Analysis 

The technology uses sensor images and real-time data to show the crop's status. 

Predictive analytical models that combine real-time and historical data can show patterns in 

agricultural production and weather fluctuations. By combining all accessible data with model 

projections, this strategy allows farmers to make better decisions regarding insect management 

and fertilizer irrigation schedules. The result is a decision-support system that makes it easy for 

farmers to adapt their practices and how they use resources to meet the specific needs of each 

growing season. Improved agricultural output and long-term sustainability can be achieved 

through targeted interventions, and this approach makes improved resource utilisation possible.  

b.6 Implementation and Deployment 
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Presenting state-of-the-art precision agriculture equipment to farmers through the set-

up and operation phase helps to close the gap between theory and practice. Farmers can improve 

their agricultural operations by simplifying complicated technological procedures with the help 

of the ARS-DLConvNN architecture. This method makes data-driven decisions possible for 

farmers with varied levels of technical competence by reducing obstacles to entry for cutting-

edge agricultural technologies. The system may reduce data analysis and provide vital insights 

to enhance agricultural practices that are less hazardous to the environment. This can potentially 

improve crop yield and resource management in various agricultural settings. 

 

4. Results and Discussion 
a. Experimental Setup 

The testing dataset consisted of sensor readings, field investigations, and multispectral 

and hyperspectral photographs taken by satellite and UAV. Data augmentation strategies 

ensured the dataset was consistent and full following preprocessing. Learning, validation, and 

testing sets of data were created after the atmospheric adjustment. This started by training 

convolutional neural networks (CNNs) on time-series data to assess crop-related spatial 

characteristics. Then, LSTM networks were trained with this data. 

b. Performance Comparison 

Here, statistical analysis is defined concerning comparative studies. This study 

examines various crop varieties using f1-score, total accuracy, recall, and precision metrics. By 

contrasting the proposed method's efficacy with that of more traditional methods, these 

measures account for a wide range of data sources and deep learning techniques. Current 

approaches like CNN [18], GRU [22], and UAV [21] are compared to the proposed ARS-

DLConvNN method to offer a more comprehensive and multi-dimensional solution for 

precision agricultural applications. This method combines state-of-the-art deep learning 

algorithms with various information sources and modeling techniques. 

Precision: Of all the model's positive predictions, precision (𝑃) indicates the percentage 

of accurate positive predictions. This is achieved by the Eqn 4. 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                          (4) 

where 𝑇𝑃 (True Positives) are the accurately recognized instances of crop stress, 𝐹𝑃 

(False Positives) is the incidences of non-stress that were mistakenly classified as stress. 
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Figure 5 Accuracy Analysis 

Figure 5 shows a comparative study for the accuracy analysis of crop yield using 

various methods. Different types of crops are taken for comparison, such as wheat, corn, rice, 

soya beans, maize, and sugarcane. In the context of machine learning, precision typically 

denotes the ability of a model to accurately categorize positive samples among all the samples 

that it classifies as positive. The GRU method's precision for crop yield is very low compared 

with the UAV and CNN methods, but that precision is also low compared to the proposed ARS-

DLConvNN method. The integration of ground-based sensor readings with excellent quality a 

multispectral and hyperspectral imagery acquired from satellites and UAVs provides a holistic 

view of crop health. 

Recall: 𝑅 is the recall obtained from Eqn 5. The percentage of accurate predictions out 

of all actual positive instances is called recall.  

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                     (5) 

where 𝑇𝑃 (True Positives) are the accurately recognized instances of crop stress, 𝐹𝑁 

(False Negatives) actual crop stress cases missed by the model. 

 

 

 

 

 

 

 

 

 

 

Figure 6. Recall Analysis 

Figure 6 shows a study that compares several methodologies for recall analysis of 

agricultural yield. For comparison, various crop varieties are provided, including wheat, corn, 

rice, soybeans, corn, and sugarcane. The percentage of true positives that the model properly 

identifies is called recall. When comparing agricultural yield accuracy between the GRU, UAV, 

and CNN approaches, the recall of the GRU is significantly lower. The suggested ARS-

DLConvNN approach outperforms the UAV and CNN algorithms in the recall. For example, 

the system uses state-of-the-art LSTM networks for temporal data analysis and CNNs for 

spatial feature extraction. Because of this, the framework can detect intricate relationships and 

patterns within the data successfully. 

F1 Score: An equitable evaluation of each statistic is provided by the 𝐹1 Score is 

obtained by calculating the harmonic average of both recall and accuracy using Eqn 6. 
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𝐹1 = 2 (
𝑃×𝑅

𝑃+𝑅
)                                         (6) 

where 𝑃 and 𝑅 are obtained from Eqn 4 and Eqn 5, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. F1 Score Analysis 

A comparison of different methodologies for the F1-score analysis of agricultural yield 

is shown in Figure 7. Wheat, maize, soybeans, corn, rice, and sugarcane are comparable crops. 

By giving a single metric that considers false positives and false negatives, the F1-score 

examines the balance between recall and precision. Comparing the UAV and CNN approaches, 

the GRU method has a very low F1 score for crop yield. Nevertheless, the suggested ARS-

DLConvNN approach outperforms the UAV and CNN methods regarding F1 scores. The 

system generates more accurate predictions on future crop development scenarios and possible 

problems using predictive analytics approaches that combine historical information, weather 

predictions, and real-time sensor data. This enables improved decision-making and resource 

allocation. 

Overall Accuracy: The percentage of accurate (positive and negative) predictions 

among all the model's predictions is known as overall accuracy (𝐴). This is essential for all 

approaches to prevent false alarms. Eqn 7 could achieve this. 

𝐴 =
(𝑇𝑃+𝑇𝑁)

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                        (7) 

where 𝑇𝑁 is the appropriately recognized non-stress instances.  
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Figure 8. Overall Accuracy Analysis 

Figure 8 shows a comparative study on the overall accuracy analysis of crop yield using 

various methods. Different types of crops are included for comparison, such as wheat, corn, 

rice, soybeans, maize, and sugarcane. Overall accuracy measures the proportion of all instances 

(both positive and negative) that are correctly identified by the model. The GRU method's 

accuracy for crop yield is very low compared to the UAV and CNN methods. However, the 

accuracy of the UAV and CNN methods is also lower than that of the proposed ARS-

DLConvNN method. A greater accuracy score signifies that the model effectively distinguishes 

between positive cases (crop stress) and negative instances (no crop stress). Based on the graph, 

it is evident that the ARS-DLConvNN approach outperforms the existing methods in terms of 

accuracy when monitoring various crop growth. Table 1 displays the results of a geographical 

and temporal comparison between the standard approach and the suggested ARS-DLConvNN. 

Table – 1 Comparative summary for Spatial and Temporal Analysis. 

Aspect   

 

Conventional 

Models like CNN, 

GRU, and UAV 

ARS-DLConvNN Framework 

Spatial Resolution   
 

Lower, limited by 

manual methods 

Higher, leveraging high-resolution RS 

data and CNNs 

Temporal  

Resolution 
 

 

Lower, periodic field 

surveys 

Higher, continuous real-time 

monitoring with LSTMs 
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Feature Extraction   
 

Manual or semi-

automated 

Automated, advanced feature 

extraction using CNNs 

Accuracy  
 

Lower due to coarser 

data and methods 

 

Higher due to detailed data and 

sophisticated algorithms 

Detection Speed   
 

Slower, dependent on 

survey frequency 

Faster, continuous automated 

detection 

Predictive 

Capability 
 

 

Limited, simpler 

statistical methods 

 

Enhanced, using real-time data and 

predictive analytics 

Resource  

Intensity 
  

 

High, labor and time-

intensive 

Lower, automated and efficient 

processes 

Intervention 

Timeliness 
  

 

Delayed, slower data 

processing 

Timely, real-time monitoring and 

proactive measures 

 

5. Conclusion  
An innovative approach to improving precision agriculture management is offered by 

the ARS-DLConvNN architecture. It integrates deep learning methods such as CNN with the 

LSTM strategy. This integration allows for multispectral and hyperspectral images acquired 

from satellites and UAVs to monitor the condition of crops, moisture in the soil, nutritional 

status, and insect infestations. CNNs are useful for remembering things and following 

directions because they train the brain to store and discard data as needed selectively. Temporal 

analysis with LSTMs allows for the investigation of an order of events spanning the past, 

current, and future and the sequential execution of application-specific tasks. The system's 

accuracy in detecting crop problems like water limitations, nutrient shortfalls, and insect 

infestations is above 90%, demonstrating a noteworthy degree of precision. In addition, unlike 

traditional scouting methods, it provides this useful information around fourteen days in 

advance. Better and faster decisions may be made in agriculture with this enhanced capability, 

which can improve crop yields and longevity. While the system shows potential, it confronts 

challenges like the need for faster data processing, easier user interfaces, and more accessibility 

so that all farmers may benefit from these technological advancements. Overcoming these 

limitations, making the system more capable of handling heavier loads and adapting to new 

conditions, and providing farmers with comprehensive training and support should be the top 

priorities of future research.  
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