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A B S T R A C T  

One category-invariant methodology for object identification is zero-shot learning (ZSL), which 

uses semantic embeddings to categorize unseen categories. The ZSL method is indispensable in 

fields where data is scarce, including medical diagnosis and navigation. This paper proposes an 

Improved ZSL (I-ZSL) framework to increase the object recognition accuracy and generalization 

for the medical and navigation applications. The proposed framework is a hybrid architecture that 

uses Variational Autoencoders (VAEs) for robust feature generation and Transformer-based 

embeddings for semantic alignment. A domain-adaptive classifier, trained through contrastive 

learning, bridges the gap between the seen and unseen classes. The classifier has identified the 

framework with minimal training data in medical diagnostics for rare disease diagnosis. The 

proposed I-ZSL framework achieved a 20% improvement in F1-score over state-of-the-art models. 

In navigation, it demonstrated 25% better performance in novel landmark recognition under 

dynamic environmental conditions. These results show the framework's efficiency in addressing 

domain-specific challenges. This work presents ZSL with great potential to further object 

recognition in applications with significant impacts. 

 

 

Keywords:  Object recognition, Variational Autoencoders, Transformer-based embeddings, 

contrastive learning, medical diagnostics. 

1. Introduction 
A Computer Vision (CV) based object recognition, which finds and identifies objects 

in images or videos, has lately seen remarkable strides [1]. However, this typically requires 

large, annotated datasets, in which traditional learning models are not well adapted to new 

scenes. Zero-shot learning (ZSL) enables one to recognize objects in categories not seen at 

training. In this regard, ZSL helps make CV systems more flexible and intelligent by reducing 

dependence on exhaustive labelled datasets [2]. A powerful extension of ZSL is Zero-Shot 

Detection, which enables novel object localization, tracking, and retrieval. It can do this by 

interpreting the mutual relation of an object with its surrounding environment through 

semantics such as object names or natural language descriptions [3]. Similarly, the zero-shot 

semantic and instance segmentation generalizes from observed categories to unseen ones based 

on ground-truth annotations. This is achieved by aligning visual features with semantic 

embeddings generated by pre-trained language models such as GloVe or word2vec, which build 

cross-modal links [4]. Such alignment ensures knowledge will be transferred from seen to 

unseen classes, forming the backbone of effective ZSL frameworks [5]. 
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Recent advances have opened the direction of generative approaches to ZSL that 

synthesize features of unseen categories, usually leveraging recent generative techniques such 

as GAN. While effective, these methods may reduce the classifier's ability to recognize true 

features and run the risk of forgetting knowledge from observed classes [6]. To address such a 

challenge, multi-modal models are introduced in ZSL through VL pre-training, which 

integrates visual and textual datasets, such as image-caption pairs, in building joint 

representations that reflect complex cross-modal relationships [7]. The study finds extensive 

applications of ZSL in the real world. Autonomous vehicles use this to identify obstacles not 

seen before from a dynamic environment using navigation systems. In medical diagnoses, rare 

or unforeseen diseases are located using ZSL. For instance, it can detect COVID-19 using chest 

X-rays even though it hasn't been trained on that dataset specifically [8, 9]. For instance, in 

most instances, models designed for medical picture segmentation perform better than the 

Segment Anything Model (SAM) [10], even though SAM has demonstrated encouraging zero-

shot segmentation performance. Therefore, this shows the demand for specialized ZSL 

frameworks to meet the domain-specific challenges efficiently. 

The evolution of ZSL, from semantic-visual alignment to GAN-based generative 

methods, has become increasingly sophisticated. ZSL provides a potent method for recognizing 

unseen categories in diverse domains by optimising the divergence between the observed and 

synthesised features. Yet, balancing generalization with domain-specific adaptation remains a 

challenge. Large language models have recently shown phenomenal performance in common-

sense reasoning and adaptability. Therefore, integrating such models with ZSL presents 

immense prospects for breakthroughs in object detection, among other CV tasks [11, 12]. To 

build joint representations that reflect the intricate relationships between the two modalities, 

visual-language (VL) pre-training is used to pre-train multi-modal models using extensive 

datasets containing visual and textual information, such as images and captions [13]. For agent 

navigation, visual representation is crucial. To assist the agent in comprehending the 

surroundings, it seeks to extract pertinent information from the observations. In early 

experiments, the policy network's inputs were limited to combining several visual 

representations, such as object detection bounding boxes, raw RGB-D pictures, and semantic 

segmentation masks [14]. Notwithstanding these developments, a fundamental flaw in these 

approaches is their dependence on labelled items for training, which ignores the possibility of 

learning from unlabelled seen objects. When agents try to find invisible targets, they may 

mistakenly travel towards labelled seen things, which might result in less-than-ideal decision-

making [15]. 

The study introduces an Improved ZSL (I-ZSL) framework for object recognition in 

medical and navigation applications. The proposed model presents a hybrid architecture that 

combines Variational Autoencoders, which generate synthetic features for unseen classes, with 

Transformer-based embeddings that precisely align semantics. The domain-adaptive classifier, 

trained using contrastive learning, further enhances generalization by enabling robust mappings 

between seen and unseen classes. 

The contributions of this research are threefold  

✓ The proposed I-ZSL framework uses Variational Autoencoders to generate robust, high-

quality latent feature representations. 

✓ Transformer-based semantic embeddings align the seen and unseen categories by 

capturing semantic relationships. 

✓ A classifier trained via domain adaptive contrastive learning will effectively generalize by 

filling in the gap between seen and unseen classes. 

✓ The proposed I-ZSL framework improved the F1-score for diagnosis of rare diseases by 

20% and increased novel landmark recognition under dynamic conditions by 25%. 
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The proposed I-ZSL work demonstrates ZSL's high potential for large-scale 

improvement of object recognition in critical, high-impact applications and thus opens the route 

for broader usage in real-world scenarios. 

2. Literature Survey 
Simonetto et al. [16] presented OpenNav, an approach for zero-shot 3D object detection 

to empower an assistive robot with the capability of target identification and safe navigation 

using RGB-D images. The method has integrated a 2D detector with an open-vocabulary, a 

mask generator for semantic segmentation, and depth-based point cloud creation to produce 3D 

bounding boxes. OpenNav has been validated on the Replica dataset and gives a significant 

gain of +9pts in mAP25 and +5pts in mAP50. However, limitations include degraded 

performance in dynamically changing environments and dependency on the accuracy of RGB-

D sensors for depth isolation. 

Soysal et al. [17] proposed ontology-based class embeddings that could enhance ZSL's 

disease detection performance using small-dimension medical image datasets. The chestX-

ray14 multi-labelled data is used, with the ResNet50 image embeddings and semantic data 

extracted from DBpedia. Cosine, Hamming, and Euclidean distances are applied to measure 

similarities. It achieved 23.25% precision in one-to-one matching and 29.59% in at least one 

matching. However, the method handled unseen disease recognition, and it faced challenges in 

scaling to complex ontologies and improving precision for real-world applications. 

Bian et al. [18] developed a Zero-Shot Learning framework for medical images using 

cross-modality information to remedy the challenge of limited annotated data. It extracts 

relation prototypes from prior segmentation models and leverages a cross-modality adaptation 

module for inheritance. A relation prototype awareness module enhances ZSL model 

comprehension, while an inheritance attention module recalibrates prototypes for improved 

learning. Evaluated on cardiac and abdominal datasets, it outperforms conventional methods 

while raising concerns about scalability and adaptability to complex medical terminologies. 

Zhao et al. [19] presented a zero-shot retrieval model for medical images that identifies 

the challenges in diagnosing an emerging infectious disease with limited historical data. The 

work integrates meta-learning and ensemble learning into the proposed model to enhance 

generalization without requiring relevant training data. The experimental results demonstrate a 

3-5% lift over traditional methods, enabling accurate retrieval of images for new data types. 

This, in turn, has provided adequate decision support for diagnosing emerging diseases, though 

at the possible cost of managing highly diverse data sets and rapidly changing medical contexts.  

Tasnim et al. [20] reviewed object detection methods and outlined their developments 

and applications. These range from traditional detection approaches that rely on handcrafted 

features and classical algorithms to deep learning-based methods that leverage CNNs and 

transformer-based architectures for better accuracy and efficiency. Various applications are 

explored, from robotics to medical imaging. Ethics, occlusion handling, orientation robustness, 

zero-shot learning, few-shot learning, and the necessity of such learning are all addressed in the 

research. The study outlined developing fairness, transparency, and integrations with 

complementary tasks. 

Wang et al. [21] proposed a framework that leverages LLMs and Yolo-World to detect 

zero-shot anomalies in safe visual navigation. The approach is based on specific prompts that 

can point out anomalies in camera frames and provide audio descriptions regarding navigation 

under challenging scenarios. This kind of dynamic switching of scenarios addresses the 

previous limitations in navigation. While promising, this work demonstrates the potential of 
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video anomaly detection and vision-language understanding, together with optimizing prompt 

design and real-time processing in diverse and fast-changing environments. 

Gutiérrez et al. [22] showed that they could segment medical images, including chest 

X-rays and lung CTs, using the SAM segmentation model from Meta, even though they didn't 

train it on medical datasets directly. Using Vision Transformer (ViT)-L accomplishes 

remarkable results: in CTs, a mean Dice score of 94.95% and a Jaccard index of 91.45%, and 

X-rays, 93.19% and 87.45%, respectively. Scores like these are near the cutting edge of what's 

possible for these jobs and exceed the required criteria. The usage of pre-defined prompts and 

the difficulty of handling extremely complicated segmentation circumstances are two 

constraints, even though the user input is minimal. 

a. Research gaps 

This section highlights improvements in Zero-Shot Learning across object detection, 

medical imaging, and navigation. However, significant gaps remain. State-of-the-art methods 

include OpenNav and ontology-based embeddings, which, while promising, face scalability 

issues and possible dynamic environments that might be ontologically complex. Cross-

modality frameworks and retrieval models enhance generalization but show weak semantic 

alignment and poor scalability in different applications. Unlike these, the proposed I-ZSL 

framework integrates VAEs, Transformer embeddings, and contrastive learning for superior 

generalization, effectively addressing domain adaptability and recognition accuracy. 

3. Proposed Methodology 
The proposed I-ZSL framework offers robust generalization, domain adaptability, and 

scalability to various applications with limited labelled data. This framework will integrate 

VAEs and transformer-based embeddings for effective unseen class recognition, amplifying 

their performance in various diversified fields: Medical diagnostics for improved detection of 

rare diseases and autonomous navigation to detect improved landmark recognition in dynamic 

conditions. Applications involve using robotics to interact with new objects, environmental 

monitoring to understand ecosystem changes in real-time, and even retail for seamless handling 

of new product identifications. I-ZSL saves costs and boosts efficiency in high-impact, data-

scarce domains.  

 

Figure 1: Proposed I-ZSL architecture 

Figure 1 shows the Improved Zero-Shot Learning framework for object recognition in 

medical diagnostics and navigation. It focuses on a step-by-step process where the input data, 
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for instance, medical X-rays and 3D navigation scenes, undergo feature extraction through 

VAEs, which provide robust latent representations. The transformer-based semantic 

embeddings align the features of seen and unseen categories to improve generalization. A 

domain-adaptive classifier, trained by contrastive learning, closes the gap between these 

categories. Eventually, the validation outputs reveal such a framework that ensures improved 

accuracy in finding rare diseases or dynamic landmark recognition. The visualization integrates 

medical and navigation themes intending to cross-domain adaptability. 

a. Data collection and preprocessing 

Medical data collection 

A diversified collection of 11,120 frontal-view X-ray pictures from 30,805 individual 

patients make up the ChestX-ray14 dataset [23]. Automatic extraction methods from radiology 

reports result in several labels for each image. In pneumonia detection, any photos that have 

been tagged as positive for pneumonia are referred to as positive examples, while any images 

that do not have pneumonia as their corresponding negative examples. There is no patient 

overlap between the training, validation, and test sets; each set contains 3,89 patients and 4,201 

photographs. The dataset contains 28,744 patients and 98,637 images. 

Before normalization, the images are shrunk down to 224×224 pixels in size and 

averaged with the standard variation of the photos in the ImageNet-trained archive. After then, 

they are just sent into the system. The random horizontal flipping of images during training 

further increases diversity. 

Navigation dataset 

Almost 5 million photos in the Google locations dataset (GLDv2) [24] have labels that 

show both natural and man-made locations. Its three parts—training, indexing, and testing—

are tailored to specific tasks, including as retrieval and landmark identification. Two Kaggle 

competitions, one devoted to landmark recognition and the other to retrieval, introduced the 

dataset in a CVPR'20 publication. At a CVPR'19 workshop, participants shared their findings 

from these contests. Here, the study may find the dataset, baseline models, and the code to 

calculate metrics, all of which can be downloaded. Scores for the top ten teams in each 

challenge, according to the most recent ground-truth version, are also included. 

Preprocessing 

In medical image preprocessing, the first step involves the normalization of pixel 

intensities. Normalization of the intensity values in a medical image standardizes pixel values 

to have a mean of 0 and unit variance. It is a common preprocessing step in image processing 

that helps reduce image bias due to differences in acquisition settings. Equation (1) gives the 

formula, 

𝑋𝑛𝑜𝑟𝑚 =
𝑋−𝜇

𝜎
                                              (1) 

Where, 𝑋 is the matrix of an image's pixel intensity, 𝜇 is the average intensity value of 

the whole dataset, and 𝜎 is the standard deviation of pixel intensities. To smoothen/denoise, the 

Gaussian filter that removes noise introduced by sensors is used. This filter soothes the image 

while maintaining all the essential features. The formula gives a Gaussian filter shown in 

equation (2), 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒
−

𝑥2+𝑦2

2𝜎2                                               (2) 
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where: (𝑥, 𝑦) are the coordinates of a pixel in the filter window. 𝜎 controls the extent 

of smoothing applied to the image. To focus on specific anatomical structures, the study 

performs threshold-based segmentation. It is carried out by choosing a threshold value above 

which regions of interest are separated from the background. The formula of segmentation is 

given in the following equation (3) as, 

𝑀(𝑥, 𝑦) = { 1,𝑖𝑓 𝐼(𝑥,𝑦)>𝑇
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                              (3) 

where, 𝐼(𝑥, 𝑦) −the intensity at the pixel (𝑥, 𝑦). 𝑇 −the threshold value to be used to 

separate the ROI from the background. 

In the navigation dataset, the preprocessing steps include ensuring consistent colour 

scaling across images and normalizing RGB pixel values to the range [0, 1]. Equation (4) shows 

the normalization formula,  

𝑌𝑛𝑜𝑟𝑚 =
𝑌−𝑌𝑚𝑖𝑛

𝑌𝑚𝑎𝑥−𝑌𝑚𝑖𝑛
                                             (4) 

where, 𝑌 is the RGB value. 𝑌𝑚𝑖𝑛 and 𝑌𝑚𝑎𝑥  are the minimum and maximum RGB values 

in the dataset. Scaling and Centering Point Clouds are necessary to process 3D point clouds. 

Equation (5) gives formula as, 

𝑝𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑝−𝑝𝑚𝑒𝑎𝑛

𝑑𝑚𝑎𝑥
                                              (5) 

where, 𝑝 is a 3D point in the point cloud. 𝑝𝑚𝑒𝑎𝑛 is the centroid of all points in the cloud. 

𝑑𝑚𝑎𝑥 is the maximum distance from the centroid to scale the cloud uniformly. Bilateral filtering 

removes noise from the depth maps while preserving edges or details of importance. The 

bilateral filter equation (6) is as follows: 

𝐼𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑝) =
1

𝑊𝑝
∑ 𝐼(𝑞)𝑓𝑟(|𝐼(𝑝) − 𝐼(𝑞)|)𝑓𝑠(‖𝑝 − 𝑞‖)𝑞𝜖𝑁                  (6) 

Where, 𝑊𝑝 is the normalizing factor. 𝑓𝑟 is the range kernel, that keeps the intensity 

difference between pixels. 𝑓𝑠 is the spatial kernel, which controls the influence of the pixel 

distance. 𝑁 is the set of neighbouring pixels of 𝑝. 

b. Feature extraction using VAEs  

VAEs are an effective unsupervised learning technique with several feature extraction 

capabilities. They can find robust generalized latent representations from the data unsupervised. 

These involve encoding, latent space regularization, decoding, and reconstruction stages.  

Figure 2 shows the VAE’s process.   

 

Figure 2: Variational AutoEncoder’s process 

In the encoding phase, input data 𝑋 is passed through an encoder network that has the 

job of mapping it into a latent space representation, 𝑧. The encoder outputs two parameters 
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𝜇 𝑎𝑛𝑑 𝜎, which represent the mean and variance of the distribution for the encoded latent space, 

respectively. A sample 𝜖 drawn from such a distribution yields the latent variable 𝑧 computed 

as shown in equation (7), 

𝑧 = 𝜇 + 𝜎. 𝜖, 𝜖~𝑁(0,1)                       (7) 

Latent Space Regularization: The Kullback-Leibler (KL) divergence from the learned 

distribution to a standard normal distribution can be minimized such that the latent space is 

smooth and structured. The KL is computed using the equation (8) as, 

𝐿𝐾𝐿 = −
1

2
∑ (1 + log(𝜎𝑗

2) − 𝜇𝑗
2 − 𝜎𝑗

2𝑑
𝑗=1                     (8) 

Let, 𝑑 denotes the dimensionality of the latent space. 𝜇𝑗   and 𝜎𝑗  are the mean and 

standard deviation of the j-th latent dimension. KL divergence helps make the latent space 

resemble the standard normal distribution (0,1), so it is smooth and continuous. During 

decoding, the latent vector 𝑧 is passed through the decoder network to reconstruct the original 

input data. The output of the decoder, a reconstruction �̂�, is given by, 

�̂� = 𝑓𝑑𝑒𝑐𝑜𝑑𝑒𝑟(𝑧)                                              (9) 

In equation (9), 𝑓𝑑𝑒𝑐𝑜𝑑𝑒𝑟  is the decoder network that reconstructs the data from the 

latent representation 𝑧. The reconstruction loss quantifies how much the output �̂� matches the 

original input 𝑋. It is computed as the L2 (Euclidean) norm of the difference between the 

original data and the reconstruction: 

𝐿𝑟𝑒𝑐𝑜𝑛 = ‖𝑋 − �̂� ‖
2

2
                                (10) 

The loss in equation (10) ensures that the autoencoder learns to reconstruct the input 

from its latent representation accurately. Thus, the total loss function for training the VAE 

combines the reconstruction loss and the KL divergence. The total loss is given in the following 

equation (11) as, 

𝐿𝑉𝐴𝐸 = 𝐿𝑟𝑒𝑐𝑜𝑛 + 𝛽𝐿𝐾𝐿                                            (11) 

where, 𝛽 is a hyperparameter that balances the weight of the KL divergence term. The 

larger 𝛽, The more emphasis is placed on regularizing the latent space, the better. For training, 

the above composite loss will be minimized to allow the VAE to learn a well-structured latent 

space while preserving the ability to reconstruct input data. 

c. Semantic Embedding Alignment using Transformers 

The I-ZSL framework primarily consists of the alignment in semantic embedding stage. 

At this stage, the detected and unseen categories' semantic embeddings are matched with the 

data's visual attributes. By projecting this information into a common semantic space, the model 

is able to generalize its knowledge from visible classes to invisible ones. 

Pseudocode- 1: Semantic Embedding Alignment 

Input: Preprocessed visual data 𝑋 = {𝑥𝑖}, category labels 𝐶 = {𝑐𝑖} 

Output: Aligned embeddings for seen and unseen categories 

Step 1: Extract Visual Features 

  for each image 𝑥𝑖𝑖𝑛 𝑋: 

https://www.doi.org/10.70023/sahd/241103
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𝑧𝑖 = 𝑉𝐴𝐸𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑥𝑖) # Visual feature extraction 

Step 2: Extract Semantic Embeddings: 

   for each category 𝑐𝑖 𝑖𝑛 𝐶: 

𝐸(𝑐𝑖) = 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 (𝑐𝑖) # Semantic embedding extraction 

Step 3: Align Features in Shared Space: 

   Initialize learnable projection matrices 𝑊𝑣  and 𝑊𝑠 

   for each visual feature 𝑧𝑖 and semantic embedding 𝐸(𝑐𝑖) 

𝑧𝑖
′ = 𝑊𝑣  ∗ 𝑧𝑖 # Project visual feature 

𝐸′(𝑐𝑖) = 𝑊𝑠 ∗ 𝐸(𝑐𝑖) # Project semantic embedding 

Step 4: Compute Similarity: 

   for each pair (𝑧𝑖
′, 𝐸′(𝑐𝑖)) 

𝑆(𝑧𝑖
′, 𝐸′(𝑐𝑖)) = 𝑐𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑧𝑖

′, 𝐸′(𝑐𝑖)) 

Step 5: Optimize Alignment: 

   Minimize contrastive loss: 

𝐿𝑜𝑠𝑠 = − log(
exp (𝑆(𝑧𝑖

′, 𝐸′(𝑐𝑖))/𝜏)

∑ exp (𝑆(𝑧𝑖
′, 𝐸′(𝑐𝑖))/𝜏)𝑁

𝑗=1

 

Step 6 : Perform Inference: 

   For each test image 𝑥𝑡𝑒𝑠𝑡: 

𝑧𝑡𝑒𝑠𝑡 = 𝑉𝐴𝐸𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑥𝑡𝑒𝑠𝑡) 

    Predict category: 

𝑐𝑝𝑟𝑒𝑑 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑆(𝑧𝑡𝑒𝑠𝑡, 𝐸′(𝑐𝑖)) ) 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑐𝑖 

 

The pseudocode-1 systematically integrates the visual and semantic features into a 

shared space for robust zero-shot learning. It leverages VAEs in extracting visual features, 

transformers in semantic embeddings, and projection layers in alignment. Cosine similarity and 

contrastive loss ensure that accurate mapping allows generalization to unseen categories with 

at least minimal labelled data during inference time. 

The pseudocode did so by first extracting features from the image using a Variational 

Autoencoder; this transforms the input data into a robust and powerful latent representation, 𝑧𝑖 

that is meaningful enough to represent information for alignment. Categories are embedded 

parallel into a continuous vector space, 𝐸(𝑐𝑖) through transformer models like BERT. Both 

visual and semantic features are projected into a common feature space through learnable 

transformations 𝑊𝑣 𝑎𝑛𝑑 𝑊𝑠 respectively, so the dimensionalities would be compatible. 

A cosine similarity metric assesses the alignment quality between visual and semantic 

features. In contrast, a contrastive loss optimizes this mapping to maximize similarity for the 

correct pairs and minimize it for the incorrect ones. During the inference process, test images 

are encoded to visual features, and their categories are predicted by seeking the closest semantic 

embedding in the aligned space. This enables strong recognition of unseen categories with only 
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semantic descriptions and improves generalization. By creating a common ground for hidden 

visual characteristics and semantic descriptions, it can generalize to previously undiscovered 

categories. In I-ZSL, the optimization for alignment is by contrastive loss and embedding via 

transformers to recognize objects robustly across domains 

d. Domain-Adaptive Classifier Training with Contrastive Learning 

A domain-adaptive classifier is trained to learn robust discriminative features that 

bridge the gap between seen and unseen categories. Contrastive learning makes the embeddings 

of similar categories (positive pairs) closer and those for different categories (negative pairs) 

farther apart in the shared feature space, hence enhancing generalization by classifiers for 

unseen categories. 

The first step in training the domain adaptive classifier is embedding extraction. This 

involves two steps: (i) Visual Embeddings: Input image 𝑥𝑖 is fed into a feature extractor, which 

can be a deep neural network like a Variational Autoencoder (VAE): 

𝑧𝑖 = 𝑓𝑉𝐴𝐸(𝑥𝑖)                      (12) 

In equation (12), 𝑧𝑖  is the latent representation of the visual input. (ii) Semantic 

Embeddings: For category 𝑐𝑖, semantic embeddings are generated with a Transformer (equation 

(13): 

𝐸(𝑐𝑖) = 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟(𝑐𝑖)                    (13) 

The second step is feature projection which involves aligning the visual and semantic 

embeddings, projecting them using learnable projection layers 𝑊𝑣 𝑎𝑛𝑑 𝑊𝑠 are applied as shown 

in equation (14), 

𝑧𝑖
′ = 𝑊𝑣  ∗ 𝑧𝑖 and 𝐸′(𝑐𝑖) = 𝑊𝑠 ∗ 𝐸(𝑐𝑖)                   (14) 

In the above equation, 𝑧𝑖
′, 𝐸′(𝑐𝑖)𝜖ℝ𝑑 are the projected embeddings in a common feature 

space. These projections guarantee compatibility in terms of both dimensionality and 

semantics. The next stage is to apply the contrastive loss function. This function will group 

visual and semantic embeddings of the same class together (positive pairs) and separate 

embeddings of different classes (negative pairs). 

For a batch of 𝑁samples, the loss for a visual embedding 𝑧𝑖
′  and its positive semantic 

embedding 𝐸′(𝑐𝑖) is shown in equation (15) as, 

𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 = − log(
exp (𝑆(𝑧𝑖

′ ,𝐸′(𝑐𝑖))/𝜏)

∑ exp (𝑆(𝑧𝑖
′ ,𝐸′(𝑐𝑖))/𝜏)𝑁

𝑗=1

                  (15) 

Here, 𝜏 is the temperature parameter that regulates the sharpness of the distribution of 

similarities. This loss maximizes similarity in ta positive pair while minimizing similarity in a 

negative pair. 

The next step is classifier training that includes, a neural network classifier 𝑔 is trained 

to map aligned embeddings to class probabilities: 

𝑦�̂� = 𝑔(𝑧𝑖
′)                                (16) 

 In equation (16), 𝑦�̂� represents the predicted probabilities for all classes. Cross-entropy 

loss is used to train 𝑔 as shown in following equation (17), 

𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = −
1

𝑁
∑ ∑ 𝑦𝑖,𝑘 log(𝑦𝑖,�̂�)𝐾

𝑘=1
𝑁
𝑖=1                             (17) 
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Where,  𝑦𝑖,𝑘is the true label (one-hot encoded) for class k. Thus, the combined loss 

function represents the total loss of training the domain-adaptive classifier combines contrastive 

and classification losses given in following equation (18), 

𝐿𝑇𝑜𝑡𝑎𝑙 = 𝜆𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 + (1 − 𝜆)𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛                 (18) 

where 𝜆 balances the importance of alignment and classification. The final step is 

inference, during this, test images are fed into the classifier, and a predicted class is found by 

identifying the class with the highest probability as shown in equation (19) as, 

�̂� = 𝑎𝑟𝑔 max
𝑘

𝑦�̂�[𝑘]                    (19) 

where 𝑦�̂�[𝑘] is the probability of class k.  

The proposed approach offers strong generalization by utilizing contrastive loss. It 

effectively allows making the model recognize unseen categories by aligning them with 

semantically similar seen categories. Another merit is that domain-adaptive classifiers train on 

a variety of domains-from medical images to navigation data-thus allowing for flexibility and 

adaptability across applications. It combines semantic embeddings with robust feature 

alignment and hence achieved high accuracy for unseen categories, reaching the key challenges 

in zero-shot learning, while improving performance in varied, real-world scenarios. 

4. Results and Discussion 
a. Experimental setup 

The proposed I-ZSL framework setup will assess its performance for benchmark 

datasets on medical diagnostics and navigation. Medical diagnostics rely on the ChestX-ray14 

dataset, including 112,120 frontal-view X-rays for training and validation, while pneumonia 

detection is based on an F1-score metric. Landmark recognition, applied in navigation, rests on 

the Google Landmarks Dataset-GLDv2, focusing on mean Average Precision, mAP, under 

dynamic environmental conditions. It includes normalization of the images, resizing, and 

augmentation. Feature extraction is done using Variational Auto-encoders, semantic alignment 

using Transformer-based embeddings, and training of domain adaptive classifiers using 

contrastive learning, which is also evaluated against three baselines metods including OpenNav 

[16], Ontology-based Embedding [17] and Cross-Modality Framework [18]. 

b. F1-score for medical diagnostics 

The F1-score is critical for imbalanced data sets such as medical diagnostics, where 

some disease categories are underrepresented. This value shows how well the classifier can 

balance out false positives and false negatives. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2.
𝑃𝑟𝑒𝑠𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
       (20) 

In above equation (20), 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 and 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
. 
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Figure 3: F1-score comparison 

Figure 3 shows the comparison of F1-scores by I-ZSL and baseline methods for rare 

disease classification: this is because VAEs synergically combine in the paper for robust feature 

extraction with transformer embeddings that allow for better semantic alignment, thus 

generalizing to unseen classes in critical domains of diagnosis and navigation in medical 

practice. It will enable the proper identification of rare diseases in health care and avoid 

misdiagnosis when identifying landmarks for navigation along with autonomous decision-

making. The three technical novelties-VAEs, Transformer embeddings, and contrastive 

learning, improve by 15-19% compared to the current state-of-the-art methods. 

c. Mean Average Precision (mAP) for Navigation Tasks 

mAP takes the average of the precision over recall levels to consider the classifier's 

ability to recognize landmarks. This would be useful for navigation under dynamic 

environmental conditions since precision and recall would be maximized for any test scenario. 

The following equation (21) gives the necessary formula as,  

𝑚𝐴𝑃 =
1

|𝑄|
∑ 𝐴𝑃(𝑞)𝑞𝜖𝑄                                           (21) 

Where, 𝑄 represents set of all queries in landmarks; 𝐴𝑃(𝑞) denotes average precision 

of 𝑞 query.  

 

Figure 4: mAP comparison 
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Figure 4 shows that the I-ZSL performs better, outperforming baseline results with 

mAP-25 of 81.4% and mAP-50 of 77%. This arises from the innovative combination inside the 

framework-VAEs for feature generation with Transformer embeddings for semantic alignment. 

Higher mAP scores at both thresholds assure the framework's strength in dealing with real-

world medical diagnosis and navigation tasks. They have also continuously recorded a gain of 

up to 13%, a maximum of 9% over traditional approaches. 

d. Classification Accuracy for Unseen Categories 

Classification accuracy measures the proportion of correctly identified unseen 

categories, reflecting the framework's generalization capability. This is essential for assessing 

ZSL performance in novel settings. The following equation (23) gives the necessary formula,  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑙𝑎 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠⁄ × 100 

                                                                                                                                   (23) 

 

Figure 5: Classification accuracy comparison 

Figure 5 shows that I-ZSL has an outstanding performance of 90.8% on seen categories 

and 81% on unseen categories, which is way higher than baseline methods. This proves that 

VAEs with a hybrid architecture and Transformer embeddings will work well. The much-

reduced gap between the performances on seen versus unseen categories, 9.8% compared to 

17.3% in OpenNav, proves a much better generalization capability, essential in medical 

diagnosis and navigation applications with limited training data. 

5. Conclusion  
The study proposes an Improved Zero-Shot Learning framework that remarkably 

enhances object recognition and generalization accuracy in domains where data can be sparse, 

as in medical diagnostics and navigation. I-ZSL incorporates Variational Autoencoders for 

generating robust features, Transformer-based embeddings to align semantic space, and a 

domain-adaptive classifier trained by contrastive learning that closes the gap between seen and 

unseen classes. It achieved a 20% improvement in the F1-score for diagnosing rare diseases in 

medical applications, and the performance increase by 25% in novel landmark recognition 

under dynamic navigation conditions was beyond state-of-the-art models. These results 

underpin the capability of I-ZSL to deal with the most challenging situations while performing 

domain-specific object recognition by showing its robustness and adaptability. Future works 
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include extending to scalability in handling large and complex multimodal data and exploring 

real-time deployment scenarios. Further optimization of the semantic alignment process and 

the domain-adaptive classifier will also be explored after that for enhanced generalization over 

diverse and evolving environments. 
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