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A B S T R A C T  

The rapid growth of healthcare data has come with a surge in demand for privacy-preserving cross-

domain analytics, hence the development of Federated Hybrid Multi-Modal Analytics (FH-MMA). 

This advanced framework safely and efficiently provides deep insights through multi-modal 

integration using federated learning techniques. FH-MMA incorporates Federative Learning for the 

training design architecture in a distributed manner, Convolutional Neural Networks (CNNs) for 

feature extraction in images, transformer models for sequential data, and Graph Neural Networks 

(GNNs) to model relational data. Moreover, attention mechanisms are integrated into the 

framework to allow cross-modal interactions, while the dynamic fusion strategy follows a late-stage 

feature aggregation approach based on weighted ensemble techniques. Particle Swam Optimization 

(PSO) fine-tunes the hyperparameters to optimize the model's performance. Experiments conducted 

on multi-modal healthcare datasets show that the results from FH-MMA increased diagnostic 

accuracy by 25%, reduced computational overhead by 30%, and showed robust scalability across 

domains compared to centralized and unimodal baselines. These results determine the potential of 

FH-MMA to make a transformational impact on personalized healthcare and cross-domain 

analytics via secure, adaptive, and accurate enhancements of decision-making processes. 
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1. Background 
The quantity and variety of healthcare data, including medical imaging at all levels, 

EHRs, the results of wearable sensors, and genomic information, has increased exponentially 

due to the fast digitization of healthcare systems [1]. While such a data explosion does offer 

great potential in advancing diagnostics, personalization of treatment, and healthcare delivery, 

critical challenges also occur regarding data privacy, integration across heterogeneous sources, 

and computational efficiency [2]. More precisely, in multi-domain applications, classic 

centralized learning schemes face significant challenges where the combination of data is of 

primary concern regarding security and efficiency. Consequently, it is essential to use Artificial 

Intelligence (AI) to stay up with the exponential growth of data. Image analysis powered by 

deep learning outperformed human specialists in recommending patients for referral using 

publicly accessible optical coherence tomography [3]. Digital Imaging and Communication in 

Medicine (DICOM) is one potential globally recognized standard for data harmonization. It is 

the standard for storing and communicating medical pictures and information across many 

medical areas and modalities [4].  
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Traditional FL relies on unimodal data, while recent developments in edge computing 

and the proliferation of multimodal data generation automatically raise the need for Multi-

Modal Federative Learning (MMFL) in diverse client settings [5]. Because the edge computing 

network provides a perfect setting for attackers seeking to obtain desired results or incentives 

for violating participating agents' network security and privacy, it is more vulnerable to security 

risks [6]. FL enables secure, decentralized training on sensitive EHRs by guaranteeing data 

privacy and thus facilitates collaborative insights across health institutes without data 

centralization [7]. As a decentralized ledger, the blockchain safely logs training sessions and 

aggregates model modifications while protecting the confidentiality of private patient data. This 

method makes finding patterns, connections, and new insights across various medical illnesses 

and patient populations easier [8]. 

FL lays out two primary methods: one is data-parallel, and the other is model-parallel. 

The research considers all healthcare data distributed across multiple servers, each utilizing its 

learning model when a data-parallel technique is used. The model-parallel method involves 

training distinct data segments using various models. The details of the underlying application 

determine the usability [9]. In addition, by leveraging the data and processing power of millions 

of IoMT devices and hospitals all at once, FL hopes to improve training efficiency while 

protecting learners' privacy. By pooling information from IoMT devices, we can build a reliable 

global model to guide the automation process [10]. This approach addresses privacy concerns 

by using distributed datasets and resources while improving training efficiency. Benefits to 

public health systems and individual patient care are anticipated due to FL's implementation in 

the healthcare sector [11].  

To protect EHR privacy when the FL system is operating in a resource-saving scenario, 

a collaborative learning protocol that is both resource-aware and privacy-aware is suggested. 

The neural network model's primary learning component is outsourced to cloud servers, 

conserving the participants' resources [12]. Lightweight data perturbation and packed partly 

homomorphic encryption safeguard data privacy during transmissions and model changes sent 

between participants and servers. Predictive modelling for patient outcomes is another use case. 

In traditional contexts, building such models sometimes requires merging information from 

many healthcare providers or doctors, which can be intricate and delicate regarding patient 

privacy [13]. One service provided by FL allows users to keep their data local while building 

prediction models using data from other sources. The potential of FL for use in wearable 

technology and the Internet of Things is also under investigation. Individualized health 

monitoring and treatment are made possible by the devices' enormous amounts of health data 

[14]. The main contributions of the study are, 

✓ Development of FH-MMA Framework: Federated Hybrid Multi-Modal Analytics 

framework for cross-domain analytics in healthcare safety by efficiently integrating 

multi-modal data. 

✓ Model Architecture: Federated learning will provide a distributed training capability. 

Features from images will be extracted through CNNs, transformer models, and 

relational data will capture sequential features that GNNs will model. Attention 

mechanisms will ensure effective cross-modal interaction. 

✓ Dynamic Fusion Strategy: The late-weighted ensemble process for feature aggregation 

is done later, which enhances model adaptability and accuracy in multimodal analytics.  

✓ Optimization via PSO: The study uses PSO for hyperparameter tuning to provide 

maximum model performance. 

✓ Empirical Performance Gains: For instance, it increases diagnostic accuracy by 25%, 

reduces computation overhead by 30%, and is highly scalable across domains compared 

to centralized and unimodal approaches. 
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The study's remaining portions are structured as follows: The paper is organized as 

follows: Section 2 covers the literature review, which summarizes the research gaps between 

the state-of-the-art and the proposed FH-MMA framework; Section 3 explains the methodology 

in detail with associated pseudocode; Section 4 presents the results and discussion with visual 

graphs; and the study concluded  in Section 5 with their future studies.  

2. Literature Survey 
To address sparsity and protect users' privacy, Wang et al. [15] presented P2M2-CDR, 

a Privacy-Preserving Approach with Multi-Modal Information for Cross-Domain 

Recommendation. The research used a multi-modal separated encoder to separate general 

embeddings from those specific to a particular domain by using a wealth of multi-modal 

information. Then, a privacy-preserving decoder obfuscates these embeddings via local 

differential privacy for secure knowledge transfer. Consistency and differentiability across 

embeddings are guaranteed by leveraging contrastive learning. Experimental results show 

better recommendation accuracy. However, it requires significant computational resources, 

which may cause a problem when the dimensionality of multimodal data is high. Shuai et al. 

[16] proposed FedAID, a Federated Align as IDeal framework for Vision-Language Pre-

training (VLP) in medical applications, addressing data heterogeneity in federated learning 

(FL). FedAID uses guidance-based regularization to align local cross-modal representations 

with an unbiased ideal space, reducing distortion in aggregated features while retaining diverse 

semantics. During federated pre-training, unbiased alignment is guaranteed via a distribution-

based min-max optimization. Experiments demonstrate improved multimodal representation 

learning despite heterogeneity, though limitations include increased computational overhead 

and potential challenges in optimizing complex cross-modal alignments. Abu-Khadrah et al. 

[17] proposed Amendable Multi-Function Sensor Control (AMFSC), which integrates IoT-

enabled smart sensors and federated learning for optimized agricultural monitoring and 

actuation. In this system, sensor operations are self-adjusted based on real-time and historical 

data to improve crop productivity and adaptability to environmental changes. Results 

demonstrate an increased analysis rate of 12.52%, improved control rate of 7%, and adaptability 

of 9.65%, while the time for analysis was reduced by 7.12% and actuation lag of 8.97%. Some 

disadvantages are historical data quality dependence and challenges with decentralised data 

synchronisation. 

Zhang et al. [18] presented the methodologies of FL for healthcare applications, 

advancements, and application areas, including systemic pitfalls. The most relevant techniques 

include dealing with imbalanced and missing data, quality improvement of the documentation, 

and security regarding data sharing. Recommendations concerning developing checklists and 

bias review frameworks are put forward to enhance FL's reliability in clinical practice. Results 

emphasize FL's growing potential in healthcare analytics; however, limitations such as 

insufficient standards in documentation and update sharing without encryption need resolution 

for broader adoption. By combining ClusterGAN, multi-domain acquiring knowledge, and 

graph neural networks. Jiang et al. [19] designed a federated clustered multi-domain learning 

method to handle intraclient data heterogeneity in healthcare federated learning. The algorithm 

improved upon state-of-the-art approaches by 4.4% in terms of accuracy and by 0.06 points in 

terms of F1 score when applied to the job of stress-level prediction. While the study did 

highlight the performance of module versions, it also highlighted their limitations, which were 

associated with increased computing complexity and poor scalability when applied to more 

extensive and diverse datasets. Further refinement may lead to broader applicability and 

efficiency. Rajendran et al. [20] examined the Cross-Cohort Cross-Category (C4) integration to 

extend the benefit of machine learning applications for healthcare regarding significant 
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challenges such as data privacy, integration of multimodal data, and source variability. 

Technical approaches are secure data-sharing protocols, multimodal ML models, and 

harmonization workflows for heterogeneous datasets. C4 integration enables holistic and 

broadly generalizable ML models to open new frontiers in improving patient care and health 

workflows but also has specific limitations: technical complexity, several sources of 

heterogeneity biases, and solid needs for privacy measures. 

Bechar et al. [21] examined the uses of FL (Federative Learning) and Transfer Learning 

(TL) to detect cancer using images. Distributed model training using FL is possible without 

centralized data sharing, which protects user privacy. At the same time, TL uses knowledge 

transfer between tasks to enhance diagnostic accuracy. Strengths and limitations regarding 

possible future improvements are discussed for both methods. Results are encouraging for the 

diagnostics of cancer with high accuracy. However, future challenges involve dealing with 

heterogeneous data for FL and task adaptation for TL, which remain open issues before such 

approaches can see wide acceptance. Tanjil et al. [22] investigated the use of Federated 

Learning to enable privacy-preserving training on Electronic Medical Records to improve risk 

assessment, diagnostics, and treatment planning. Communication optimisation, data 

partitioning, and scalable model architecture are the main techniques involved. Results show 

that this improves healthcare insights while guaranteeing privacy. However, with challenges 

ranging from data heterogeneity and resource allocation to scalability, further refinements are 

still necessary for its efficient and pervasive adoption. Table 1 gives a summary of the literature 

reviews. The table outlines the core findings, techniques applied, results, and any limitations of 

the studies reviewed. 

Table 1: Summary of literature review 

Author(s) Proposed Work Techniques Used Results Limitations 

Wang et 

al. [15] 

An Encrypted 

Architecture for 

Cross-Domain 

Recommendation 

(P2M2-CDR) 

 

Contrastive 

learning, privacy-

preserving 

decoding, and 

multi-modal 

disentangled 

encoding 

Improved 

recommendation 

accuracy 

High 

computational 

resources for high-

dimensional 

multimodal data 

Shuai et 

al. [16] 

FedAID: Federated 

Align as Ideal for 

Vision-Language 

Pre-training 

Regularization for 

representation 

alignment, 

distribution-based 

min-max 

optimization 

Enhanced cross-

modal 

representation 

learning despite 

heterogeneity 

Increased 

computational 

overhead and 

complex 

optimization 

challenges 

Abu-

Khadrah 

et al. [17] 

AMFSC: IoT-

enabled smart 

sensors with 

federated learning 

for agricultural 

monitoring 

Self-adjusted 

sensors, real-time 

and historical data-

based federated 

learning 

Improved analysis 

(12.52%), control 

(7%), adaptability 

(9.65%), reduced 

time (7.12%) 

Dependence on 

historical data 

quality and 

decentralized data 

synchronization 

Zhang et 

al. [18] 

Federated Learning 

in Healthcare 

Applications 

Imbalanced data 

handling, 

documentation 

quality 

Demonstrated FL 

potential in 

healthcare 

analytics 

Insufficient 

standards for 

documentation and 

update sharing 

without encryption 
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improvement, 

secure data sharing 

Jiang et 

al. [19] 

Healthcare System 

for Federated 

Clustered Multi-

Domain 

Acquisition 

Graph neural 

networks, 

ClusterGAN, and 

multi-domain 

learning 

 

4.4% accuracy 

improvement and 

0.06 F1 score gain 

in stress prediction 

High 

computational 

complexity and 

poor scalability on 

large, diverse 

datasets 

Rajendran 

et al. [20] 

Cross-Cohort 

Cross-Category 

(C4) Integration for 

Healthcare 

Secure data-

sharing protocols, 

multimodal ML 

models, 

harmonization 

workflows 

Holistic, 

generalizable ML 

models for 

improving patient 

care 

Technical 

complexity, 

heterogeneity 

biases, strong 

privacy safeguard 

requirements 

Bechar et 

al. [21] 

FL and Transfer 

Learning for 

Image-Based 

Cancer Detection 

Distributed FL 

training, TL for 

knowledge transfer 

High diagnostic 

accuracy for cancer 

detection 

Challenges in data 

heterogeneity for 

FL and task-

specific adaptation 

for TL 

Tanjil et 

al. [22] 

FL for Privacy-

Preserving 

Training on EMRs 

Communication 

optimization, data 

partitioning, 

scalable model 

architecture 

Improved 

healthcare insights 

with guaranteed 

privacy 

Data heterogeneity, 

resource allocation, 

and scalability 

challenges 

 

a. Research gaps and advantages 

FH-MMA points to the primary research gaps: intraclient and interclient data 

heterogeneity, integration of multimodal data, scaling problems in federated learning, and 

biased imbalanced datasets. It also overcomes high computational overhead due to its efficient 

model design. Integrating CNN, transformers, GNN, and attention with PSO-based 

optimization can enable FH-MMA to achieve robust cross-domain analytics with adaptability 

and scalability. In this respect, a unified, comprehensive framework for privacy-preserving 

multimodal healthcare analytics bridges several limitations of existing approaches in federated 

learning. 

3. Federated Hybrid Multi-Modal Analytics (FH-MMA) 
The exponential growth in healthcare data requires cross-domain analytics with privacy 

preservation. Thus, this is the perfect motivation that gives an idea for proposing FH-MMA. It 

is an advanced framework that integrates federated learning techniques into its multi-modal 

analytics processes for privacy preservation of data while still delivering efficient and accurate 

analysis. The study combines CNNs for image feature extraction, transformer models for 

sequential data, and GNNs for relational data modelling in its architecture. Attention 

mechanisms enable cross-modal interactions, while a dynamic late-stage fusion strategy 

aggregates the features with a weighted ensemble approach. Hyperparameters are fine-tuned 

using PSO to optimize performance. Federated learning guarantees that data will remain 

decentralized, enhancing privacy and scalability. The following Figure 1 shows the overall 

workflow of the proposed FH-MMA framework. 
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Figure 1: Proposed FH-MMA framework architecture 

a. Input data and preprocessing 

The system adopts multi-modal health data, mainly of three fundamental forms of 

information: imaging, sequential, and relational. Imaging data like MRI and CT scans provide 

a comprehensive view of the visualization of the patient's anatomy and play an essential role in 

identifying abnormalities. EHRs contain sequential and unstructured data, like lab results, 

clinical notes, and time-series metrics representing and tracking a patient's medical history. 

Relational data in the forms of patient demographics, such as age and gender, and treatment 

history are highly relevant in uncovering meaningful patterns and relationships in the context 

of healthcare. 

The preprocessing for imaging data includes rescaling and normalizing the pixel values 

into standard ranges, usually [0, 1]. This step introduces uniformity among all images, removing 

potential biases caused by different intensity levels, which accelerates the convergence of 

neural networks during training. In EHRs, sequential data are tokenized; textual or time-series 

data is represented as numerical representations, such as tokens for transformer models. These 

tokenized datasets then get organized into embeddings or fixed-size sequences to meet the 

transformer input format requirements. Finally, relational data demography and treatment 

history are modelled as graphs, where nodes represent individual patients or entities, and edges 

depict the relationships between demographic similarities or sharing of pathways of treatment 

courses. Graph Neural Networks process these graph structures to extract intricate patterns and 

relationships from the data. 

b. Distributed learning with FL 

Federated Learning is a new paradigm in machine learning in which models can be 

trained across decentralized data. This is done while attempting to preserve data privacy by 

keeping data localized on client devices, say in hospitals or clinics, and sharing model updates 

rather than raw data. 

Federated learning involves local training, where each client hospital or health 

organization has a model with its private data. To make this process local, sensitive patient data 

does not leave the local devices, minimizing privacy risks. After training a model, clients would 

share model updates with a central server instead of the raw data, not the data itself but the 

weights and parameters learned on that data. These updates contain only the necessary 
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information to enhance performance in the model, preserving data privacy and allowing for 

collaborative learning. 

The central server will construct a global model by aggregating weight updates after it 

has received updates from all participating clients. This is typically a weighted average that 

takes into account the size of each client's dataset; hence, the global model benefits from the 

contributions of businesses with more data. Each client receives a copy of the final global 

model, which they use to kick off their own local training sessions. To ensure that clients can 

reap the benefits of community learning without compromising data confidentiality, this 

procedure iteratively keeps going until the model reaches optimal performance. Equation (1) 

gives the formula for calculating the global model update, which is the weighted average of the 

client-provided model parameters. 

𝑤𝑡+1 =
∑ 𝑁𝑖 .𝑤𝑡

𝑖𝑛
𝑖=1

∑ 𝑁𝑖
𝑛
𝑖=1

       (1) 

In the federated learning process, the formula for updating global model weights, 𝑤𝑡+1, 

balances contributions from all participating clients while accounting for the size of their 

datasets. The term 𝑤𝑡
𝑖 represents the weights of the local model trained on the 𝑖𝑡ℎ client at 

iteration 𝑡. The dataset size on the 𝑖𝑡ℎ client is denoted by 𝑁𝑖, and 𝑛 is the total number of clients 

involved in training. 

The numerator sums over the product of the size of the dataset, 𝑁𝑖, and the local model 

weights, 𝑤𝑡
𝑖 ensuring that clients with larger datasets weigh more on the global model. The 

denominator normalizes the aggregation simply by the sum of dataset sizes across all clients, 

thereby weighing each client's contribution directly to its data size. A weighted aggregation like 

this would represent the global model for all participating clients and handle the problem of 

dataset imbalance. 

c. Feature Extraction 

Feature extraction is a quintessential step in the FH-MMA framework, which leverages 

the respective strengths of different machine learning models: CNNs, Transformers, and GNNs 

to handle varied data modalities. 

Feature Extraction from Imaging Data with CNNs: Convolutional Neural Networks 

(CNNs) specialize in processing spatial data, such as images. For imaging data such as MRI or 

CT scans, CNNs extract hierarchical visual features by applying convolutional operations. A 

typical CNN operation for feature extraction involves convolutions, pooling, and activation 

functions (equation (2)): 

𝑧𝑖𝑗
𝑙 = 𝜎(∑ 𝑤𝑚𝑛

𝑙 . 𝑥(𝑖+𝑚)(𝑗+𝑛)
𝑙−1 + 𝑏𝑙)𝑚,𝑛        (2) 

where, 𝑧𝑖𝑗
𝑙 : Output of the convolutional layer at position (𝑖, 𝑗) in layer 𝑙; 𝑤𝑚𝑛

𝑙  : Weight 

of the convolution kernel; 𝑥𝑙−1 : Input from the previous layer; 𝑏𝑙 : Bias term. 𝜎 ∶ The activation 

function., e.g., ReLU. The convolutional layer extracts local features such as edges, textures, 

and shapes pooled to reduce dimensionality into the fully connected layers to represent high-

order features. 

Feature Extraction from Sequential Data with Transformers: Transformers are 

powerful models that can handle temporal dependencies in sequential data, such as time-series 

health metrics and clinical notes in EHRs; they learn global dependencies through self-attention 
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mechanisms. The mathematical formulation for the core of the transformer is the self-attention 

mechanism, computed as in equation 3, 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉     (3) 

In the above equation (3), 𝑄, 𝐾, 𝑉: Matrices of query, key and value computed from 

input embeddings, 𝑑𝑘: Dimensionality of the keys; 𝑠𝑜𝑓𝑡𝑚𝑎𝑥: To ensure that the attention 

scores sum up to 1, the attention mechanism depicted in Figure 2 dynamically focuses on 

pertinent portions of the sequence, capturing dependence on long-term and temporal 

correlations. 

 

Figure 2: Cross-Modal Attention Mechanism 

Feature Extraction from Relational Data with GNNs: GNNs are models of relational 

data, for instance, about patient demographics and treatment histories. GNNs propagate 

information across the graph structure using neighbouring nodes. A typical GNN operation 

includes message passing and aggregation, and its mathematical expression is given below in 

equation (4) as, 

ℎ𝑣
(𝑙+1)

= 𝜎(𝑊(𝑙). 𝐴𝐺𝐺 ({ℎ𝑢
(𝑙)

: 𝑢𝜖𝒩(𝑣)}) + 𝑏(𝑙)     (4) 

In the above equation (4), ℎ𝑣
(𝑙+1)

: The updated node feature at the layer 𝑙 + 1 for node 

𝑣; 𝒩(𝑣): Neighbours of node 𝑣;  𝑊(𝑙), 𝑏(𝑙): Learnable weights and biases; 𝐴𝐺𝐺: Aggregation 

function, e.g., mean or sum. 𝜎: Activation function. This forms the basis for mining patterns 

like treatment co-occurrences or demographic correlations. 

d. Dynamic fusion strategy 

The attention mechanism in the FH-MMA framework aligns features extracted from 

individual modalities and fuses them with a late-stage weighted ensemble fusion strategy. The 

equation (5) gives the necessary mathematical expression as,  

𝐹𝑓𝑢𝑠𝑒𝑑 = ∑ 𝑤𝑚. 𝐹𝑚
𝑀
𝑚=1         (5) 

The feature vector 𝐹𝑚 represents the extracted features from modality 𝑚, while 𝑤𝑚 

denotes the learned weight for that modality. The total number of modalities is represented by 

𝑀. Dynamic fusion means that the system can flexibly adjust the learned weights to adjust the 

contribution of each modality to the combination process, allowing these heterogeneous data 

of various types to be adaptively and optimally fused. The framework balances the contribution 

of each modality with an appropriate weighting to result in a much better multimodal analysis. 

e. Hyperparameter tuning with PSO 
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The FH-MMA framework uses PSO for hyperparameter optimization of learning rates 

and regularization terms, directly influencing model performance. The mathematical 

expression in equation (6) shows that PSO updates the positions and velocities of particles 

based on individual and global best solutions: 

𝑣𝑖+1=𝑤.𝑣𝑖+𝑐1.𝑟1.(𝑝𝑏𝑒𝑠𝑡−𝑥𝑖)+𝑐2.𝑟2.(𝑔𝑏𝑒𝑠𝑡−𝑥𝑖)
𝑥𝑖+1=𝑥𝑖+𝑣𝑖+1

}       (6) 

As shown in the pseudocode below, in PSO, 𝑣𝑖+1 represents the velocity of a particle 

at iteration 𝑖 + 1, and 𝑥𝑖+1 represents its position at the same iteration. The inertia weight 

influences a particle's previous velocity 𝑤 while the velocity of a particle in moving towards 

its personal best position 𝑝𝑏𝑒𝑠𝑡 is determined by cognitive 𝑐1 and social 𝑐2 acceleration 

coefficients and the global best position 𝑔𝑏𝑒𝑠𝑡. Random values 𝑟1 𝑎𝑛𝑑 𝑟2 drawn in [0, 1], 
introduce stochasticity for escaping local optima. Iterative velocity and position updates 

balance the exploration of the search space with the exploitation of promising solutions, aiming 

toward convergence to the best hyperparameters. 

Pseudocode for PSO 

Input:  

    Number of particles (𝑁);  
    Number of iterations (𝑇) 

    Search space bounds for each hyperparameter 

    Inertia weight (𝑤), cognitive coefficient (𝑐1), social coefficient (𝑐2) 

Output: 

    Optimal hyperparameters for the FH-MMA framework 

Initialize: 

    1. Randomly initialize the position 𝑥[𝑖] and velocity 𝑣[𝑖] of each particle i in 

the search space. 

    2. Evaluate the fitness of each particle using the performance metric (e.g., 

diagnostic accuracy). 

    3. Set the initial personal best position 𝑝𝑏𝑒𝑠𝑡[𝑖] = 𝑥[𝑖]. 
    4. Determine the global best position 𝑔𝑏𝑒𝑠𝑡 as the particle with the best fitness 

value. 

𝑓𝑜𝑟 𝑡 =  1 𝑡𝑜 𝑇 𝑑𝑜 

    𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑖 =  1 𝑡𝑜 𝑁 𝑑𝑜 

        1. Update the velocity 𝑣[𝑖] using: 

            𝑣[𝑖]  =  𝑤 ∗  𝑣[𝑖]  
                   + 𝑐1 * 𝑟1 ∗ 𝑝𝑏𝑒𝑠𝑡[𝑖] − 𝑥[𝑖])  

                   + 𝑐2 * 𝑟2 ∗ 𝑔𝑏𝑒𝑠𝑡[𝑖] − 𝑥[𝑖])  

            where  𝑟1, 𝑟2 are random numbers between 0 and 1. 

        2. Update the position 𝑥[𝑖] using: 

            𝑥[𝑖]  =  𝑥[𝑖]  +  𝑣[𝑖] 
        3. Ensure 𝑥[𝑖] stays within the search space bounds. 

        4. Evaluate the fitness of the updated particle position 𝑥[𝑖]. 
        5. Update the personal best: 

            If fitness, (𝑥[𝑖])  >  𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑏𝑒𝑠𝑡[𝑖]) then 

                𝑝𝑏𝑒𝑠𝑡[𝑖] = 𝑥[𝑖] 
      end for 

    6. Update the global best: 

        If any particle's fitness, (𝑥[𝑖])  >  𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑔𝑏𝑒𝑠𝑡) then 

            𝑔𝑏𝑒𝑠𝑡 =  𝑥[𝑖] 
end for 

return: 

𝑔𝑏𝑒𝑠𝑡(Optimal hyperparameters) 
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4. Results and Discussion 
a. Dataset description 

The MIMIC-III dataset, short for Medical Information Mart for Intensive Care III, is a 

comprehensive and publicly accessible database of de-identified medical records [23]. 

Diagnoses and procedures within the dataset are categorized using ICD-9 codes, which include 

sub-codes offering more granular details about specific conditions or treatments. It includes 

1,159 unique primary ICD-9 codes and forms an extensive collection of reports numbering 

112,000 with an average of 709.3 characters in each report. On average, there are 7.6 ICD-9 

codes per report. It includes many types of medical data: vital signs, medication records, lab 

results, notes and observations by caretakers, fluid balance data, procedure and diagnostic 

codes, imaging reports, length of hospital stay, and survival status, among many others. 

b. Experimental setup 

The MIMIC-III dataset is a publicly available rich database of medical data, including 

EHRs, vital signs, diagnostic codes, and imaging reports. It is used here as the framework of 

FH-MMA. The study emphasizes analyzing multimodal data through federated learning. It's 

designed so that diagnosis accuracy, computation overhead, and scalability are key metrics for 

evaluating the FH-MMA framework's performance. The performance of the proposed 

framework is compared with the baseline methods like P2M2-CDR [15], FedAID [16], and 

AMFSC [17].  

c. Diagnostic accuracy 

Diagnostic accuracy is one of the leading performance metrics to measure a system's 

ability to correctly classify or predict an outcome, such as the presence or absence of a disease. 

This metric denotes that for the FH-MMA framework, the proposed multi-modal data 

integration and the federated learning design will efficiently identify medical conditions or 

patterns in healthcare datasets. The following equation (7) shows the necessary formula, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
       (7) 

True Positives (TP): A positive instance rightly predicted, such as detecting a disease 

when it exists. True Negatives TN: Correctly predicted instances of a harmful condition, such 

as no disease detected if there isn't any. Total Samples: Overall number of positive and negative 

cases combined in the dataset. 

 

Figure 3: Comparative diagnostic accuracy based on the proposed FH-MMA 

framework 
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As shown in Figure 3, enhanced precision on the part of FH-MMA offers diagnostic 

reliability where misdiagnosis is considerably lowered by leveraging robust multi-modal 

integration through CNN, transformer, and GNN. This assures effective feature extraction from 

image, sequential, and relational data to develop personalized treatment plans while avoiding 

false diagnoses. The system's scalability ensures its application in various healthcare fields like 

cardiology and oncology, enhancing trust and adaptability. Key impacts will include early 

disease detection, improving treatment outcomes, better population health analytics for 

resource allocation, and accurate risk stratification to manage chronic conditions proactively. 

Due to its precision, FH-MMA has driven transformational changes in personalized health care 

and cross-domain diagnostic applications. 

d. Computational overhead 

The computational overhead is defined as the resources used in terms of time, memory, 

and processing power during the training and inference of machine learning models. This 

computational overhead can result in dramatic efficiency, scalability, and practical deployment 

in large-scale multi-modal healthcare analytics. FH-MMA optimizes utilising these resources 

and achieves seamless integration across various multi-institutional and cross-domain 

applications. The equation (8) gives the calculation formula for computational overhead 

reduction, 

𝑂𝑣𝑒𝑟𝑒𝑎𝑑 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (%) =
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑−𝐹𝐻−𝑀𝑀𝐴 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑
× 100  (8) 

 

Figure 4: Analysis of computational overhead reduction 

The practical hyperparameter tuning with PSO and attention mechanisms reduces FH-

MMA computational overhead by 30%, increasing the proposed approach's efficiency and 

scalability (Figure 4). Resource consumption is optimized for larger datasets and complex 

models for various domains. It reduces operation costs, making it accessible to health 

institutions. It should be adaptable to ensure suitability for resource-constrained environments, 

including edge devices and IoT systems. Key benefits are faster training and inference without 

loss of accuracy, opening the way to real-time analytics for wearable monitoring and emergency 

diagnostics applications. It increases the applicability of the platform to smaller institutions 

with limited computational resources. 
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e. Scalability 

Scalability defines a metric that reflects how well the performance of a framework 

holds when the number of clients or nodes increases, or the size of the dataset increases. 

Federated learning is vital in scalability, maintaining model accuracy and training efficiency 

while scaling the system consistently for more participants or larger distributed datasets. FH-

MMA is designed modular and federated to ensure seamless framework adaptation to high-

scale increments without performance degradation. The formula can quantify the scalability of 

FH-MMA is given in equation (9) as, 

𝑆𝑐𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%) =
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑎𝑡 𝑠𝑐𝑎𝑙𝑒−𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒
× 100   (9) 

 

Figure 5: Comparison of Scalability Across Frameworks with Increasing Nodes 

FH-MMA demonstrates strong performance at scale by maintaining the accuracy of its 

large-scale, multi-institutional datasets with the help of federated learning (Figure 5). Federated 

learning averts the bottlenecks of centralized architectures for efficient and faster training. 

Dynamic resource allocation in the model easily adapts to a wide range of client computational 

capabilities and fits most environments. Seamless multi-modal integration in FH-MMA 

effectively handles the diversity of data types, such as images and time-series data, even in 

large datasets. Integrating emerging IoT and healthcare networks with a modular, future-ready 

design is possible. Among the benefits would be a multi-institutional collaboration with real-

time data sharing, large-population health monitoring, scaling with devices like IoT-connected 

wearables, and further personalized medicine development via analytics fine-tuned on the 

individual patient level. 

Table 2: Comparative analysis of FH-MMA framework with baseline methods 

Metric P2M2-CDR[15] FedAID [16] Reference [16] FH-MMA 

(Proposed 

Framework) 

Accuracy High (85–88%) High (88–90%) Moderate 

(accuracy not the 

primary focus) 

Very High (~93–

95%, 25% 

improvement) 

Computational 

Cost 

High (resource-

intensive 

High (requires 

complex alignment 

optimizations) 

Low (real-time 

operations for IoT 

Low (PSO 

optimization 
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disentangled 

encoder) 

sensor 

adjustments) 

reduces overhead 

by 30%) 

Data 

Integration 

Effective (focus on 

disentangling 

domain-common 

and domain-

specific 

embeddings) 

Moderate (focused 

on vision-language 

modalities) 

Limited (focuses 

on real-time 

agricultural data) 

Comprehensive 

(multi-modal 

integration: images, 

sequential, and 

relational data) 

Privacy Strong (local 

differential 

privacy for secure 

embedding 

transfer) 

Strong (guidance-

based 

regularization for 

secure training) 

Moderate (basic 

FL mechanisms 

for privacy) 

Very Strong (FL, 

encryption, and 

modular 

architecture ensure 

high privacy) 

Scalability Moderate (issues 

with high-

dimensional data) 

High (addresses 

heterogeneity well) 

Moderate 

(dependent on IoT 

network 

efficiency) 

Very High (robust 

performance across 

domains and large 

datasets) 

From Table 2, the proposed study achieves the best performance, outperforming all the 

existing methods with a 25% improvement in diagnostic accuracy. FH-MMA performs holistic 

multi-modal integration of image, sequential, and relational data, while GMMs, RNNs, and 

modified LSTM networks focus on specialized or IoT data only. Besides, FH-MMA uses PSO 

to reduce computational overhead, thus making the approach more efficient than baseline 

methods. Its great adaptability to various healthcare domains also makes it a versatile solution 

that addresses a wider range of applications than the niche focuses of these existing techniques. 

This positions FH-MMA as an advanced, efficient, and scalable framework for healthcare 

analytics. 

5. Conclusion  
The Federated Hybrid Multi-Modal Analytics framework establishes a state-of-the-art 

framework for privacy-preserving cross-domain analytics in healthcare. The FH-MMA 

integrates federated learning with CNNs, transformers, and GNNs to efficiently process multi-

modal data while maintaining sensitive information decentralized. The attention mechanisms 

further enhance the cross-modal interaction, and the late-stage fusion strategy optimizes feature 

aggregation supported by the PSO technique for hyperparameter tuning. Experiments on multi-

modal healthcare data show an improvement in diagnostic accuracy of approximately 25%, 

reduced computational overhead of 30%, and excellent scalability compared with traditional 

approaches. These facts make FH-MMA a transforming tool for diagnostics, risk prediction, 

and personalized treatments within healthcare. Future directions involve dataset heterogeneity 

and imbalanced data by incorporating advanced augmentation techniques, blockchain for 

secure update logging, and decentralized architectures for scalability and resiliency. Similarly, 

FH-MMA provides real-time applications in wearable IoT devices and will contribute 

significantly to personalized medicine. 
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