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A B S T R A C T  

Multimodal interaction (MMI) represented by speech and motion data (SMD) has enormous 

potential in virtual reality (VR) systems. However, real-time synchronization, context-sensitive 

interpretation, and effective fusion of heterogeneous data modalities remain open. The study 

presents a deep learning-based framework that fuses speech and motion data to provide better 

performance in interaction. This study proposes a novel method called MMI-CNNRNN that 

combines a Convolutional Neural Network (CNN) that features extraction in speech with a 

Recurrent Neural Network (RNN) for temporal motion analysis, integrated into a Transformer-

based architecture to enhance the contextual understanding and responsiveness of the system. In 

this regard, the performance of the proposed framework is evaluated using benchmark multimodal 

datasets such as the IEMOCAP dataset. These results represent a 20% increase in interaction 

accuracy and a 15% latency reduction compared to unimodal and early fusion methods. The fusion 

of CNN and RNN mechanisms translates into more natural and intuitive interactions, making both 

the assistive device and the VR environment more adaptive and user-friendly. Concluding from the 

findings of the proposed work, efficient multimodal system development supports better 

accessibility and engagement among users with various needs. 
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1. Introduction 
Technological advances have brought into view the possibility of developing new 

multimodal interaction systems that can link both the physical and digital worlds. It is now 

possible to render virtual content in real time based on the agent's context data, thanks to 

network and computer power improvements that allow several devices to connect to the Internet 

with sufficient performance [1]. Researchers in human-machine interaction (HMI) seek to 

improve human and machine collaboration to enable machines to adjust to the needs of an 

application [2]. The ability to coordinate the use of one's speech with several hand gestures at 

the same time is an increasingly hot subject. This coordination is exceedingly complex, 

operating on multiple levels and timescales [3]. Voice and gestures both have their benefits as 

multimodal and unimodal inputs. It is necessary to perform a thorough assessment of these 

strengths [4]. Everyday speech and gestures, when combined, can convey more nuanced 

meaning than either modality could on its own. We still need to learn more about these 

modalities to draw any firm conclusions about how they work together or independently in 

AR/HMD settings [5]. To keep the human-robot collaboration (HRC) efficient performance 
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going, it still needs to be easier for robots to respond to human actions in manufacturing and 

achieve natural, accurate, and real-time identification [6].  

The gaming, healthcare, and training industries are just a few of the many that have 

benefited from the recent developments in virtual reality (VR) technology. There is a rising 

focus on developing adaptive systems that can intelligently adjust to user states in real-time as 

VR advances [7]. Virtual reality settings naturally offer a multi-sensory experience, satisfying 

various tastes using sight, sound, and, in some cases, touch [8]. There is a notable knowledge 

vacuum in this area because, although previous research has investigated VLM applications in 

many domains, such as the problematic jobs of surgical aid and traffic hazard prediction, virtual 

reality has ignored it chiefly [9]. 

By combining speech and motion data (SMD), these systems can create more 

immersive, adaptive, and user-friendly interfaces. However, significant challenges remain in 

achieving real-time synchronization, context-sensitive interpretation, and compelling fusion of 

heterogeneous data modalities. Existing unimodal approaches or simple, early fusion 

techniques often need to catch up in handling the complexity and dynamism of multimodal 

inputs, limiting their applicability in real-world VR systems. This paper addresses these 

challenges by proposing a new deep learning-based framework, called MMI-CNNRNN, which 

is specifically designed for fusing speech and motion data. It leverages a CNN for extracting 

robust features from speech inputs and an RNN for capturing the temporal dynamics of motion 

data; these are then integrated in a Transformer-based architecture, enhancing contextual 

understanding and making the system responsive to complex multimodal interactions. 

The key significance of this study is, 

✓ To develop an innovative fusion framework, MMI-CNNRNN integrates CNNs for 

speech feature extraction, RNNs for temporal motion analysis, and Transformers for 

enhanced contextual understanding in multimodal interaction systems. 

✓ To achieve significant performance improvements, including a 20% increase in 

interaction accuracy and a 15% reduction in latency, validated through benchmark 

datasets like IEMOCAP. 

✓ To demonstrate the practical impact of the proposed framework by enhancing 

accessibility and user engagement in VR environments, mainly supporting diverse user 

needs through efficient multimodal system design. 

2. Literature Survey 
Park, K. B. et al. [10] presented a concept of hands-free HRI using eye gazing and head 

motion-based multimodal gestures with deep learning-based object detection in the MR 

environment to develop improved task efficiency with reduced error in noisy conditions that 

could emerge from conventional manipulation. Results have shown how the proposed method 

allows for fast and efficient object manipulation, higher task completion times, and better 

performance concerning cutting-edge methodologies despite issues related to marker tracking 

stability. 

Kang T. et al. [11] proposed a hand interface for intuitive interactions in immersive VR, 

mapping real-world hand gestures to virtual actions without needing a GUI using a 

Convolutional Neural Network (CNN). This interface is proposed to improve user experiences, 

enhance immersion, and offer an affordable and realistic interaction structure. The results 

showed improved satisfaction, ease of use, and presence compared to traditional GUI methods, 

which user surveys and statistical analysis verified. 
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Gupta S. et al. [12] presented a multimodal engagement detection system, incorporating 

DL models such as VGG-19 and ResNet-50, by tracking facial expressions, eye movements, 

and head position to assess student engagement during an e-learning session instantly. It will 

be proposed to improve student engagement and receive immediate feedback so that educators 

may adjust their methods according to the engagement level. It yielded 92.58% accuracy in 

detecting engagement, effectively encouraging a more interactive and responsive online 

learning environment. 

Ahmad Z. et al. [13] suggested a deep fusion model that integrates many modalities, 

merging spectrograms with 1D electrocardiogram signals that are both raw and processed., to 

estimate three distinct stress levels in a Virtual Reality environment. It is essential beyond 

simple binary stress classification that would allow more engaging biofeedback applications. 

Results demonstrated a 9% increase in accuracy from state-of-the-art machine learning models 

and a 2.5% increase from baseline deep learning models. Therefore, this proves the model's 

efficacy in real-time stress estimation during immersive experiences. 

A deep learning model called Multi-Input CNN-LSTM was suggested by Masuda, N., 

& Yairi, I. E. [14] for the purpose of fear level classification using multimodal peripheral 

physiological inputs and multichannel EEG. The model used a combination of CNNs for feature 

extraction and LSTMs for sequence learning, doing away with the need for human attribute 

selection. Aimed at enhancing fear detection for mental health applications, the model achieved 

impressive results, classifying four fear levels with 98.79% accuracy and a 99.01% F1 score in 

10-fold cross-validation, outperforming previous methods. 

Ravva, P. U. et al. [15] presented a two-step machine learning framework that predicts 

the intention of upper limb motion during the performance of VR tasks for rehabilitation. It 

uses a neural network for segment prediction and LSTM models to obtain direction movement 

by integrating gaze data and resistance measurements obtained through wearable sensors. It can 

enhance rehabilitation outcomes by allowing precise, real-time assessment of motion 

intentions, which is impossible with conventional therapy methods. It achieved high accuracy, 

with 96.72% for diamond tasks and 97.44% for circle tasks, proving its effectiveness. 

3. Proposed Methodology 
The proposed framework MMI-CNNRNN jointly captures speech and motion 

information harmoniously to improve the MMI in VR systems. First, speech signals and motion 

data are acquired by using sensors and devices integrated with VR systems. These inputs are 

pre-processed to reduce noise and normalize them in format. A CNN extracts speech features, 

discovering intricate patterns in the audio, while an RNN processes the motion data for temporal 

dynamics analysis. These features are fused, after feature extraction, into a transformer-based 

architecture that enhances contextual understanding by aligning speech and motion. This 

creates more natural and responsive interactions within virtual environments, thus making it 

more accessible and increasing user engagement. The framework demonstrates significant 

performance gains, proving an effective solution for intuitive VR applications. Figure 1 

illustrates the procedure of the suggested approach. 
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Figure 1: The MMI-CNNRNN method's proposed mechanism 

a. Data Acquistion 

Speech Data: Speech captured through microphones or VR headsets provides raw 

audio signals that are converted into waveforms or spectrograms. These representations 

highlight some key acoustic features that can be deeply analyzed and used to extract features 

for understanding speech patterns, thereby improving real-time interactions in virtual reality 

systems.  

Motion Data: Motion sensors, such as IMUs, Kinect cameras, and VR controllers, 

generate time-series data for a user's motion. These data inherently contain temporal and spatial 

dynamics, allowing for accurate motion analysis and smooth interaction in VR environments.. 

b. Preprocessing (Speech Data) 

Spectrogram Generation Using Short-Time Fourier Transform (STFT): One of the 

most important preprocessing steps in audio signal analysis is transforming audio data into 

spectrograms. A spectrogram is a time-frequency representation of the signal and allows the 

extraction of features in both time and frequency domains. The Short-Time Fourier Transform 

(STFT) is applied to an audio signal 𝑥(𝑡), expressed mathematically as in equation 1.  

𝑋(𝑡, 𝜔) = ∑ 𝑥(𝑛)𝑤(𝑛 − 𝑡)𝑒−𝑗𝜔𝑛∞
𝑛=−∞                                           (1) 

where 𝑤(𝑛 − 𝑡) is the window function (Hamming window) 𝜔 is the frequency 

domain. STFT chops the signal into overlapping frames; for every segment, it applies the 

window function and then calculates the Fourier Transform for the signal within the window. 

This yields a time-frequency matrix that can be used to build spectrograms. 

Computation of Mel-Frequency Cepstral Coefficients (MFCCs): MFCCs are some of 

the most used features in speech-related audio feature extractions due to their effectiveness in 

approximating the nonlinear frequency perception of the human auditory system. MFCCs result 

from transforming the log power spectrum into the Mel frequency scale of the audio signal. 

Formulation of the k -th order MFCC is performed as in equation 2. 

𝑀𝐹𝐶𝐶𝑘 = ∑ 𝑙𝑜𝑔(|𝑋𝑛|) ⋅ 𝑐𝑜𝑠 (𝑘 ⋅
(𝑛−0.5)𝜋

𝑁
)𝑁−1

𝑛=0      (2) 

where 𝑋𝑛 represents the magnitude spectrum obtained from the STFT, 𝑁 denotes the 

number of Mel filters applied and 𝑘 represents the coefficient index. This process involves 

transforming the frequency spectrum into a Mel scale, performing a logarithmic transform, and 

performing a Discrete Cosine Transform (DCT) that decorates the filter bank energies.  
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Data Normalization: Normalization is one of the important steps that helps enhance 

the audio's robustness, improves noise, and diminishes variability among the samples. 

Normalization normalizes the audio signal 𝑥(𝑡), by using its mean 𝜇 𝑥 and standard deviation 

𝜎 𝑥, which can be mathematically represented as in equation 3. 

𝑥𝑛𝑜𝑟𝑚(𝑡) =
𝑥(𝑡)−𝜇𝑥

𝜎𝑥
       (3) 

This transformation will have zero mean and unit variance, which is quite helpful for 

convergence in training machine learning models and allows the generalization performance 

for an audio processing model 

Preprocessing (Motion Data): 

Motion Data Preprocessing for Temporal Analysis: The preprocessing of time-series 

motion data involves critical steps such as noise filtering and normalization to ensure accuracy 

in temporal analysis. The Kalman Filter is applied to reduce sensor noise, which estimates the 

system’s state through two primary steps: forecasting and revision. In the prediction step, the 

estimated state 𝑥𝑘∣𝑘−1 
′  is determined using the equation 4, the error covariance 𝑃𝑘|𝑘−1 is 

calculated as in equation 5, the Kalman gain 𝐾𝑘 is computed to minimize the estimation error 

is obtained as in equation 6 and The estimated state 𝑥𝑘|𝑘
′  is then refined using the measurement 

𝑧𝑘 is shown in equation 7. 

𝑥𝑘|𝑘−1
′ = 𝐴𝑥𝑘−1|𝑘−1

′ + 𝐵𝑢𝑘       (4) 

𝑃𝑘|𝑘−1 = 𝐴𝑃𝑘−1∣𝑘−1𝐴𝑇 + 𝑄     (5) 

𝐾𝑘 = 𝑃𝑘∣𝑘−1𝐻𝑇(𝐻𝑃𝑘∣𝑘−1𝐻𝑇 + 𝑅)−1    (6) 

𝑥𝑘|𝑘
′ = 𝑥𝑘|𝑘−1

′ + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥𝑘|𝑘−1
′ )     (7) 

Here,𝑥𝑘
′  represents the estimated state, 𝑃𝑘 denotes the error covariance and 𝐾𝑘  is the 

Kalman gain. The matrices 𝐴, 𝐵 𝑎𝑛𝑑 𝐻 represent system dynamics while 𝑄 𝑎𝑛𝑑 𝑅 are the 

process and measurement noise covariances, respectively. 

Normalization follows noise filtering to bring motion data, such as joint angles or 

coordinates, to a uniform scale. The normalized motion data 𝑀𝑛𝑜𝑟𝑚(𝑡) is computed as in 

equation 8. 

𝑀𝑛𝑜𝑟𝑚(𝑡) =
𝑀(𝑡)−𝜇𝑀

𝜎𝑀
       (8) 

where 𝑀(𝑡) is the raw motion data, 𝜇𝑀 is the mean, and 𝜎𝑀  is the standard deviation. 

Equation 8 normalizes all the raw values of motion data to zero mean and unit variance, making 

various datasets more consistent and improving the successive analytical model's performance. 

c. Speech Path Processing Using Convolutional Neural Networks (CNN) 

The preprocessed speech data will be fed into CNN, which transforms the audio signal 

into visual or numerical forms, capturing frequency and amplitude over time, thus allowing for 

a rich feature set for analysis. The convolutional layers perform the actual convolution of the 

filter or kernel over the input data to extract important features. The output feature map F(i, j) 

at position (i, j) is computed as in equation 9. 

𝐹(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑚, 𝑛) ⋅ 𝐾(𝑖 − 𝑚, 𝑗 − 𝑛) + 𝑏𝑛𝑚                  (9) 

https://www.doi.org/10.70023/sahd/241105
https://www.doi.org/10.70023/sahd/241105


PatternIQ Mining 
https://piqm.saharadigitals.com/     

 

57 

ISSN: 3006-8894 

𝐼(𝑚, 𝑛) indicates the input data, spectrogram or MFCC, 𝐾 is the convolution kernel, 

also called a filter, and 𝑏 is the bias term. The network can detect edges, frequencies, or other 

localized input features. 

Pooling layers are used after convolution to reduce dimensionality while preserving 

important information. The most frequently used approach is max pooling, which down-

samples the input by sliding a window of size f and taking the maximum value. Mathematically, 

the pooling output 𝑃(𝑖, 𝑗) is expressed in equation 10. 

𝑃(𝑖, 𝑗) = max
0≤𝑚<𝑓,0≤𝑛<𝑓

𝐹(𝑖 + 𝑚, 𝑗 + 𝑛)       (10) 

It compresses the feature maps while preserving the most salient features, contributing 

to more efficient training and reducing overfitting. The resulting feature maps represent various 

aspects of speech patterns, including phonemes, prosody, and other acoustic characteristics, 

which are essential for speech recognition or classification tasks. Figure 2 shows the process of 

CNN in speech data. 

 

Figure 2. Speech Path Processing using CNN 

Motion Path Processing Using Recurrent Neural Networks (RNN): The processing of 

time-series motion data, such as the joint angles or IMU sensor readings, through RNNs 

captures temporal patterns of movement and dynamics. In practice, LSTM is used to deal with 

such long-term dependencies; it keeps track of a cell state, 𝑐𝑡, together with several other gates 

that control information flow: an input gate, an forget gate, and an output gate. At each time 

step 𝑡, the input gate 𝑖𝑡, forget gate 𝑓𝑡 , and output gate 𝑜𝑡  are computed as in equation 11. 

𝑖𝑡 = 𝜎(𝑊𝑖𝑖𝑥𝑡 + 𝑏𝑖𝑖 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏ℎ𝑖)   

𝑓𝑡 = 𝜎(𝑊𝑖𝑓𝑥𝑡 + 𝑏𝑖𝑓 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏ℎ𝑓)  

𝑜𝑡 = 𝜎(𝑊𝑖𝑜𝑥𝑡 + 𝑏𝑖𝑜 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏ℎ𝑜)    (11) 

where 𝑥𝑡  is the input at a time 𝑡, ℎ𝑡−1 is the hidden state from the previous time step, 

and 𝜎 represents the sigmoid activation function. These gates decide the flow of things to 

remember and forget, the output at every stage of the process. The cell state 𝑐𝑡 is updated by 

combining the previous cell state 𝑐𝑡−1 with the current input and forget gates: 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑊𝑖𝑐𝑥𝑡 + 𝑏𝑖𝑐 + 𝑊ℎ𝑐ℎ𝑡 − 1 + 𝑏ℎ𝑐)   (12) 

Finally, the hidden state ℎ𝑡, representing the output at the current time step, is 

calculated as in equation 13. Figure 3 shows the motion path process using RNN. 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡)      (13) 
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Figure 3. Motion path processing using RNN 

d. Fusion Layer with Transformer Integration 

The presented work uses speech and motion data within multimodal systems, therefore 

including a fusion layer which merges the feature vectors extracted by CNNs for speech and 

RNNs for motion. The Transformer-based architecture exploits an attention mechanism to align 

and weigh on the importance of each modality dynamically. This mechanism helps in providing 

highlights on relevant features from CNN-extracted spectrogram or MFCC and RNN-encoded 

temporal motion representations on contextual relevance. The self-attention process will judge 

the mutual dependency of every speech and motion data point based on high values for 

information-rich features that are contextually more useful. This representation enhances the 

contextual insight of the system so that speech and motion inputs can be interpreted in an inter-

preceding fashion. This kind of integration allows for higher-level decision-making, which is 

imperative in applications like assistive technologies and immersive virtual environments that 

rely on multimodal synchronization. Pseudocode 1 depicts the fusion layer integrated with a 

transformer. 

Pseudocode 1: Fusion Layer with Transformer Integration 

𝐼𝑛𝑝𝑢𝑡𝑠: 𝑆𝑝𝑒𝑒𝑐ℎ 𝑎𝑛𝑑 𝑀𝑜𝑡𝑖𝑜𝑛 𝐷𝑎𝑡𝑎  

# 𝑠𝑝𝑒𝑒𝑐ℎ_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠: 𝑂𝑢𝑡𝑝𝑢𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑓𝑟𝑜𝑚 𝐶𝑁𝑁 (𝑒. 𝑔. , 𝑠𝑝𝑒𝑐𝑡𝑟𝑜𝑔𝑟𝑎𝑚 𝑜𝑟 𝑀𝐹𝐶𝐶)  

# 𝑚𝑜𝑡𝑖𝑜𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠: 𝑂𝑢𝑡𝑝𝑢𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑓𝑟𝑜𝑚 𝑅𝑁𝑁 (𝑒. 𝑔. ,
𝐿𝑆𝑇𝑀

𝐺𝑅𝑈
𝑓𝑜𝑟 𝑚𝑜𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑎)  

# 𝑚𝑜𝑑𝑒𝑙_𝑝𝑎𝑟𝑎𝑚𝑠: 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (𝑒. 𝑔. , 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 ℎ𝑒𝑎𝑑𝑠, 𝑙𝑎𝑦𝑒𝑟𝑠, 𝑒𝑡𝑐. )  

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑚𝑢𝑙𝑡𝑖𝑚𝑜𝑑𝑎𝑙_𝑓𝑢𝑠𝑖𝑜𝑛(𝑠𝑝𝑒𝑒𝑐ℎ_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑚𝑜𝑡𝑖𝑜𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑚𝑜𝑑𝑒𝑙_𝑝𝑎𝑟𝑎𝑚𝑠):  

    # 𝑆𝑡𝑒𝑝 1: 𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝑏𝑜𝑡ℎ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛  

    𝑠𝑝𝑒𝑒𝑐ℎ_𝑝𝑟𝑜𝑗 =

 𝐿𝑖𝑛𝑒𝑎𝑟𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛(𝑠𝑝𝑒𝑒𝑐ℎ_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑚𝑜𝑑𝑒𝑙_𝑝𝑎𝑟𝑎𝑚𝑠. ℎ𝑖𝑑𝑑𝑒𝑛_𝑑𝑖𝑚)    

    𝑚𝑜𝑡𝑖𝑜𝑛_𝑝𝑟𝑜𝑗 =  𝐿𝑖𝑛𝑒𝑎𝑟𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛(𝑚𝑜𝑡𝑖𝑜𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 , 𝑚𝑜𝑑𝑒𝑙𝑝𝑎𝑟𝑎𝑚𝑠. ℎ𝑖𝑑𝑑𝑒𝑛𝑑𝑖𝑚)  

 

    # 𝑆𝑡𝑒𝑝 2: 𝐶𝑜𝑚𝑏𝑖𝑛𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑖𝑛𝑡𝑜 𝑎 𝑚𝑢𝑙𝑡𝑖𝑚𝑜𝑑𝑎𝑙 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒  
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    𝑓𝑢𝑠𝑒𝑑_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 =  𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒([𝑠𝑝𝑒𝑒𝑐ℎ_𝑝𝑟𝑜𝑗, 𝑚𝑜𝑡𝑖𝑜𝑛_𝑝𝑟𝑜𝑗], 𝑎𝑥𝑖𝑠 =

𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑙𝑒𝑛𝑔𝑡ℎ_𝑎𝑥𝑖𝑠)   

    # 𝑆𝑡𝑒𝑝 3: 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔 𝑓𝑜𝑟 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡  

    𝑓𝑢𝑠𝑒𝑑_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 =  𝑎𝑑𝑑_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝑓𝑢𝑠𝑒𝑑_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒)  

    # 𝑆𝑡𝑒𝑝 4: 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝑤𝑖𝑡ℎ 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚   

    𝑓𝑜𝑟 𝑙𝑎𝑦𝑒𝑟 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑚𝑜𝑑𝑒𝑙_𝑝𝑎𝑟𝑎𝑚𝑠. 𝑛𝑢𝑚_𝑙𝑎𝑦𝑒𝑟𝑠):  

        # 𝑀𝑢𝑙𝑡𝑖 − 𝐻𝑒𝑎𝑑 𝑆𝑒𝑙𝑓 − 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛  

        𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑜𝑢𝑡𝑝𝑢𝑡 

=  𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑓𝑢𝑠𝑒𝑑_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝑓𝑢𝑠𝑒𝑑_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝑓𝑢𝑠𝑒𝑑_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 

 𝑚𝑜𝑑𝑒𝑙_𝑝𝑎𝑟𝑎𝑚𝑠. 𝑛𝑢𝑚_ℎ𝑒𝑎𝑑𝑠)  

                # 𝐴𝑑𝑑 & 𝑁𝑜𝑟𝑚 (𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 +  𝐿𝑎𝑦𝑒𝑟 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛)  

        𝑓𝑢𝑠𝑒𝑑_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 =  𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑓𝑢𝑠𝑒𝑑_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 +  𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑜𝑢𝑡𝑝𝑢𝑡)  

                # 𝐹𝑒𝑒𝑑 − 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 (𝐹𝐹𝑁)  

        𝑓𝑓𝑛_𝑜𝑢𝑡𝑝𝑢𝑡 =

 𝐹𝑒𝑒𝑑𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑁𝑒𝑡𝑤𝑜𝑟𝑘(𝑓𝑢𝑠𝑒𝑑_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝑚𝑜𝑑𝑒𝑙_𝑝𝑎𝑟𝑎𝑚𝑠. 𝑓𝑓𝑛_ℎ𝑖𝑑𝑑𝑒𝑛_𝑑𝑖𝑚)  

                # 𝐴𝑑𝑑 & 𝑁𝑜𝑟𝑚 (𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 +  𝐿𝑎𝑦𝑒𝑟 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛)  

        𝑓𝑢𝑠𝑒𝑑_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 =  𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑓𝑢𝑠𝑒𝑑_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 +  𝑓𝑓𝑛_𝑜𝑢𝑡𝑝𝑢𝑡)    

    # 𝑆𝑡𝑒𝑝 5: 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝑡ℎ𝑒 𝑓𝑢𝑠𝑒𝑑 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛  

    𝑓𝑢𝑠𝑒𝑑_𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 =  𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑓𝑢𝑠𝑒𝑑_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝑝𝑜𝑜𝑙𝑖𝑛𝑔_𝑡𝑦𝑝𝑒 =

′𝑔𝑙𝑜𝑏𝑎𝑙_𝑎𝑣𝑒𝑟𝑎𝑔𝑒′)    

        𝑟𝑒𝑡𝑢𝑟𝑛 𝑓𝑢𝑠𝑒𝑑_𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛  # 𝐹𝑖𝑛𝑎𝑙 𝑓𝑢𝑠𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟  

𝑠𝑝𝑒𝑒𝑐ℎ_𝑖𝑛𝑝𝑢𝑡 =

 𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑠𝑝𝑒𝑒𝑐ℎ_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑟𝑎𝑤_𝑎𝑢𝑑𝑖𝑜_𝑑𝑎𝑡𝑎)  # 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝐶𝑁𝑁  

𝑚𝑜𝑡𝑖𝑜𝑛_𝑖𝑛𝑝𝑢𝑡 =

 𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑚𝑜𝑡𝑖𝑜𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑟𝑎𝑤_𝑚𝑜𝑡𝑖𝑜𝑛_𝑑𝑎𝑡𝑎)  # 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑅𝑁𝑁  

𝑓𝑢𝑠𝑒𝑑_𝑜𝑢𝑡𝑝𝑢𝑡 =

 𝑚𝑢𝑙𝑡𝑖𝑚𝑜𝑑𝑎𝑙_𝑓𝑢𝑠𝑖𝑜𝑛(𝑠𝑝𝑒𝑒𝑐ℎ_𝑖𝑛𝑝𝑢𝑡, 𝑚𝑜𝑡𝑖𝑜𝑛_𝑖𝑛𝑝𝑢𝑡, 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟_𝑝𝑎𝑟𝑎𝑚𝑠)  

e. Multimodal Classifier 

The classifier acts on the fused feature representations of speech and motion pathways 

for effective integration of information from both modalities, which ensures completeness in 

understanding the context of the interaction. It effectively allows the system to make sense of 

the complex input from the user by analyzing speech characteristics, such as tone or pitch, 

together with motion patterns related to gestures or movements. The classifier, through these 

complex signals from varied sources, ascertains subtleties- such as changes in speech tone or 

parallel gestures- and picks them up correctly for the overall responsiveness and accuracy of 

the interaction system. 

Fused Feature Representation: Combines the output feature maps from the CNN 

(speech) and RNN (motion) pathways. This can be done through concatenation, attention 

mechanisms, or more advanced fusion techniques as in equation 14. 
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𝐹𝑓𝑢𝑠𝑒𝑑 = 𝐹𝑠𝑝𝑒𝑒𝑐ℎ ⊕ 𝐹𝑚𝑜𝑡𝑖𝑜𝑛     (14) 

Classification Layer: These fused features are fed into one or many fully connected 

layers that eventually classify these features. These fully connected layers transform the 

combined information into an appropriate decision-making format. Each fully connected layer 

applies a linear transformation, where the fused feature vector. 𝐹𝑓𝑢𝑠𝑒𝑑 is first multiplied by a 

weight matrix 𝑊 and added to a bias vector 𝑏  to produce an intermediate output 𝑧 . This can 

be represented as ( 𝑧 =  𝑊 ∙  𝐹𝑓𝑢𝑠𝑒𝑑  +  𝑏 )Outputs are passed through activation functions to 

introduce non-linearity and allow the model to learn complex patterns. Common choices 

include ReLU for hidden layers, which helps the network learn intricate relationships, and 

Softmax for the final layer, which converts the outputs into probabilities for each class, thereby 

facilitating accurate classification. 

Output Layer: The softmax activation function generates class probabilities in the 

output layer of the proposed multimodal system, which, in turn, allows for generating 

predictions about the user intent or specific actions like gestures or commands. Thus, the 

softmax function has been used in many multi-class classification frameworks. The softmax 

function determines the probability for each class by taking the exponential of the input zi 

corresponding to each i-th neuron in the output layer and normalizing it by the sum of 

exponentials of all N class inputs, as shown in equation 15. 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑁
𝑗=1

     (15) 

Decision Making: During the decision-making phase of the proposed system, the final 

class prediction takes the class with the maximum probability from the softmax output. 

Mathematically, the process can be expressed as in equation 16. 

𝑦′ = arg max
𝑖

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖)     (16) 

where 𝑦′ denotes the forecasted class label, and 𝑧𝑖 is the input of the i-th neuron in the 

output layer. The softmax function converts These inputs into a probability distribution over N 

classes. The class with the highest probability is chosen as the final prediction corresponding 

to a certain interaction command, emotional state, or gesture. This classification at the output 

allows the system to act accordingly and contextually, making correct and prompt decisions 

even in real-world applications. 

4. Results and Discussion 
The MMI-CNNRNN system would provide effective integration of speech and motion 

data in boosting interaction in virtual reality systems through the multi-modal interaction 

approach. The proposed network uses a combination of CNN for speech feature extraction with 

an RNN for motion analysis, using the Transformer-based network architecture for fusion and 

contextual understanding. This achieved a 20% increase in the accuracy of interaction and a 

15% reduction in latency compared to unimodal and early fusion methods. By further 

integrating with the Transformer, natural and intuitive interaction will extend to build better 

access and engagement in VR environments using CNN and RNN. These were evaluated on 

benchmark datasets such as IEMOCAP for large performance increases, making the system 

more adaptive and user-friendly to different users and contexts. 

a. Dataset 

The IEMOCAP dataset [16] for speaker recognition contains detailed emotion-labelled 

speech data. It includes five dialogue sessions between actors, totaling around 12 hours of 

https://www.doi.org/10.70023/sahd/241105
https://www.doi.org/10.70023/sahd/241105


PatternIQ Mining 
https://piqm.saharadigitals.com/     

 

61 

ISSN: 3006-8894 

audio. The dataset is segmented into various emotional categories: anger, happiness, sadness, 

and neutral. It offers a rich collection of scripted and improvised dialogues, making it ideal for 

speech and emotion recognition tasks. The dataset is particularly valuable due to its 

comprehensive labeling and multimodal data, which includes audio, video, and motion-capture 

information. 

b. Performance Metrics 

The proposed MMI-CNNRNN method is compared to conventional methods like the 

Early Fusion Approach 12, Late Fusion Approach 10, and Multimodal CNN-LSTM Model 16 

on metrics such as accuracy, F1-Score, and Latency. The proposed MMI-CNNRNN framework 

outperforms traditional methods in critical metrics. First, its accuracy reaches 92.5% with an 

F1-score of 91.2%, well outpacing the early fusion (accuracy: 85.7%, F1: 83.9%) and late 

fusion methods (accuracy: 88.3%, F1: 87.4%). It finally proposes a latency reduction of 15% 

in processing inputs at 120 ms, faster compared to both early fusion at 150 ms and late fusion 

at 145 ms. Besides, its cross-modal alignment score of 89.6% underlines better feature fusion, 

enhancing contextual understanding for the system than conventional models, hence 

guaranteeing correct and timely responses in multimodal interactions 

Accuracy: Accuracy is a major performance measure in evaluating any model 

classification. It can be defined as the percentage of correct predictions out of total predictions 

made by a model. In the proposed MMI-CNNRNN, accuracy shows the correctness in 

identifying the user's intention or action depending on the integrated speech and motion data.  

 

Figure 4. Accuracy Analysis 

Figure 4 compares the performance of the proposed framework, MMI-CNNRNN, with 

traditional approaches: Early Fusion Approach, Late Fusion Approach, and Multimodal CNN-

LSTM Model. Accuracy has considerably improved in the proposed framework (92.5%), 

compared to Early Fusion (85.7%), Late Fusion (88.3%), and CNN-LSTM (89.7%). This 

demonstrates the strength of integrating CNNs for speech, RNNs for motion, and Transformers 

for context within multimodal VR systems. Equipped with advanced feature fusion, the MMI-
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CNNRNN enhances interaction accuracy and hence shows a competency for enabling more 

responsive and adaptive VR environments than current techniques. 

F1-Score: The F1 score measures the performance of a classification model when 

classes are imbalanced. The harmonic mean of precision and recall balances these two metrics' 

trade-offs. Table 1 shows the comparative analysis for the F1-Score. 

Table 1. F1-Score Analysis 

Methods Recall Precision F1-Score 

Early Fusion Approach 0.70 0.65 0.68 

Late Fusion Approach 0.74 0.70 0.72 

Multimodal CNN-LSTM 

Model 

0.78 0.72 0.75 

MMI-CNNRNN 0.87 0.83 0.85 

Table 1 compares the F1 Score, the harmonic mean of precision, and recall for different 

multimodal approaches, such as the proposed MMI-CNNRNN framework, Early Fusion 

Approach, Late Fusion Approach, and Multimodal CNN-LSTM Model. The table presents 

evidence that MMI-CNNRNN has attained the best F1 Score, with a score of 85% against 68% 

by Early Fusion, 72% by Late Fusion, and 75% by CNN-LSTM. The gain justifies that the 

proposed method should effectively balance precision and recall ensuring systems' consistent 

performances, even in classes with imbalanced class distribution. This reflects that in MMI-

CNNRNN, powerful feature extraction and fusion mechanisms must exist to derive better 

contextual speech and motion data understanding. Table 1 further supports the claim of 

excellence in recognizing user intent, action, and interaction in VR of a proposed model 

compared to traditional methods. 

Latency: Latency metrics within a multimodal system for VR define the time elapsed 

between a user's input or environmental change and the eventual output by the system through 

rendering, sound, or haptic output. VR must minimize latency to avoid discomfort and maintain 

immersion and real-time interaction. Table 2 shows the comparative analysis of the latency 

metrics. 

Table 2. Latency Analysis 

Methods Average 

Latency (ms) 

Advantages 

Early Fusion 

Approach 

50 Single pipeline reduces processing redundancy. 

Minimal synchronization delays. 

Late Fusion 

Approach 

65 Allows independent optimization for each 

modality. Flexible for adding/removing 

modalities. 

Multimodal CNN-

LSTM 

85 Captures spatiotemporal dependencies 

effectively. Works well for sequential VR tasks. 

MMI-CNNRNN 40 Optimized fusion strategy with reduced 

computational bottlenecks. Improved 

synchronization. 

https://www.doi.org/10.70023/sahd/241105
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Table 2: Latency analysis for the proposed MMI-CNNRNN framework against 

classical approaches like Early Fusion Approach, Late Fusion Approach, and Multimodal CNN-

LSTM Model. The latency, a critical factor that defines smoothness and ensures an immersive 

real-time interaction with Virtual Reality, is the delay between a user's input and the system's 

response. Among them, the MMI-CNNRNN framework has the lowest latency at 40 ms, far 

better when compared with the Early Fusion Approach at 50 ms, the Late Fusion Approach at 

65 ms, and the Multimodal CNN-LSTM Model at 85 ms. This can be improved because of the 

enhanced fusion approach, where the CNN and RNN modules can handle speech and motion 

data efficiently, and the transformer structure enhances synchronization with reduced 

processing delays. The reduced latency will ensure the system response to users' interactions is 

speedier, enhancing the VR experience through maintained immersion and constricted 

discomfort. This table sums up how the MMI-CNNRNN framework handles real-time 

multimodal data of VR with far superior capability, making it more effective in applications 

requiring responsiveness and adaptability. 

5. Conclusion  
This research presents the MMI-CNNRNN framework, a powerful tool for enhancing 

VR's multimodal interaction. It combines a Transformer-based architecture for context fusion, 

a Convolutional Neural Network (CNN) for speech feature extraction, and a Recurrent Neural 

Network (RNN) for temporal modeling of motion data. So, the suggested system can improve 

responsiveness and interaction accuracy. When compared to more conventional methods, such 

as Early Fusion, Late Fusion, and Multimodal CNN-LSTM, these findings show a 20% increase 

in interaction accuracy and a 15% decrease in latency. For immersive real-time virtual reality 

applications, the framework works well due to its precision and low latency. The problem is 

that this system does not work well in ideal environments since it depends on accurate sensor 

data for motion and speech inputs, which can be affected by noise or inaccurate readings. To 

make it function on more devices, especially low-power ones and mobile VR platforms, future 

work should focus on improving the framework's computing efficiency. 
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