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A B S T R A C T  

The increasing reliance on intelligent systems in agriculture and autonomous operations dictates 

the need for robust context-aware decision support systems (CADSS) to cope with heterogeneous 

and changing conditions. Conventional systems struggle with heterogeneous data and dynamic 

contexts, motivating the need for a meta-learning-driven solution. The paper proposes a CADSS-

based meta-learning (CADSS-ML) framework to advance the adaptability and precision of the 

system in those domains. This proposed CADSS-ML framework develops hierarchical meta-

learning using model-agnostic meta-learning (MAML) to allow fast task adaptation with ease and 

reptile algorithms for efficient optimization. Convolutional Neural Networks (CNN) have been 

used for feature extraction in spatial data, whereas transformer models have been used for temporal 

data. The Graph Neural Network (GNN) based module processes a sensor network topology, while 

an attention mechanism dynamically updates the weights on contextual variables. To perform 

decision-making, reinforcement learning with reward shaping guarantees adaptive and optimal 

control action outcomes. The proposed system also incorporates federated learning for data privacy 

across distributed sensor nodes. Experimental results confirm that improvements in prediction 

accuracy, decision reliability, and resource utilization are enhanced by 20%, 15%, and 12%, 

respectively, compared with baseline models. Some of the diverse applications of the proposed 

framework include precision farming, autonomous navigation, and smart irrigation. 
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1. Introduction 
This section will cover the challenges of intelligent agriculture and autonomous 

systems, considering dynamic contexts and privacy concerns. It will give attention to the 

limitations of current systems, introduce meta-learning, federated learning, and neural 

architectures as solutions, and present an overview of the proposed framework on CADSS 

based on meta-learning, pointing out the objectives and contributions expected. 

a. Overview 

Context-Aware Decision Support Systems development over smart agriculture and 

autonomous systems is crucial in solving dynamic environmental challenges and operational 

efficiency. Note that the term "context" is used in the context of agriculture in this study, 

meaning the information about the combination of plant, location, environment, and sensor 

device data [1]. Context-awareness generally refers to the system's decision-making process 

that is relevant to the context. Context-aware is frequently used interchangeably with reactive 
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and adaptable. Considering all these definitions, the study concludes that context awareness 

refers to the system's or application's capacity to react appropriately to execution that is 

continuously changing surroundings [2]. An automated, data-driven approach to agricultural 

production can replace labour-intensive, experience-based decision-making with high 

spatiotemporal resolution automated monitoring of the soil-plant-atmospheric continuum [3].  

b. Background of Meta-Learning, Federated Learning, And Neural 

Architectures in agricultural and autonomous systems 

Many farmers have private information that they would rather keep private. Since FL 

is a machine-learning method that allows numerous devices to train a standard model without 

exchanging data, it is well-suited for agricultural applications [4]. By facilitating access to 

different, high-quality datasets while protecting privacy, FL answers problems with agricultural 

data management. Innovative methods are needed to deal with temporal dynamics resulting 

from daily, seasonal, and annual changes. Effective methods for capturing and managing these 

developing patterns include data augmentation, time-series analysis, and dynamic LSTM 

models [5]. Many applications for autonomous vehicles use CNNs because of how efficiently 

they extract characteristics from picture data. These applications include in-vehicle human 

monitoring, steering wheel angle prediction, and object detection [6]. 

Multi-objective reinforcement learning (MORL) approaches are developed for 

sequential decision-making issues with several objectives. Because of its training, the MORL 

agent can prioritize and balance competing goals. Compared to single-objective reinforcement 

learning (SORL), MORL produces a vector as its output, which results from the agent's 

interaction with the environment [7].  Data generated by autonomous and intelligent vehicles, 

including location information and readings from sensors in real-time, is massive, making data 

privacy an important issue. FL reduces dependency on centralized cloud services, enabling edge 

computing directly on cars or network edges. FL protects users' privacy by restricting data 

sharing to necessary patterns and sub-patterns [8]. Bayesian Meta-Learning is a Meta-learning 

paradigm that improves the efficiency and adaptability of robot navigation and mapping 

systems by estimating the probability distribution over models using empirical Bayesian 

inference. By integrating ethical considerations into navigation strategies, Bayesian meta-

learning can help with ethical decision-making, privacy concerns, and safety [9].  

The reptile algorithm (RA) is a search algorithm based on crocodile hunting 

behaviours. It has proven more efficient than many current and recently suggested metaheuristic 

algorithms in addressing real-world, complex optimization problems [10]. The surrounding and 

hunting phases are essential to the RA's operation. The RSA alternates between the hunting 

search and encircling phases by splitting the total number of iterations into four halves [11]. 

Offloading jobs with the least expense and energy usage requires a context-aware machine 

learning model [12]. In Intelligent Transportation Systems (ITS), context-aware applications 

facilitate the following essential functions: dynamic configuration, annotation, display, and 

execution. These allow for environmental sensing and adaptation. These consist of GPS-based 

route recommendations, automated inter-sensor communication, multi-sensor data fusion for 

predicting traffic flow, and dynamic system reactions, such as changing traffic signals for 

emergency vehicles [13]. 

c. Contributions of the proposed work 

The main contributions of the study are, 
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• The study combines MAML for fast task adaptation and the Reptile algorithm 

for efficient optimization, enhancing decision-making adaptability and 

precision. 

• The study leverages CNNs for spatial data, transformers for temporal 

sequences, GNNs for sensor network topologies, and attention mechanisms for 

dynamic contextual adaptation. 

• Federated learning to ensure data privacy across distributed sensor nodes; used 

reinforcement learning for optimum adaptive control action. 

• The study includes multimodal data fusion techniques to enhance context 

awareness and make the system more accurate and personalized in providing 

decision support during dynamic changes. 

d. Alignment of the paper 

The remaining sections are aligned as follows: Section 2 describes a literature review 

of the study; Section 3 covers the current development of AI by incorporating meta-learning, 

multimodal data processing, privacy-preserving methods, and optimization techniques for 

further improving adaptive, context-sensitive decision support systems; Section 4 discusses the 

datasets and the results and discussions; and the paper ends in Section 5 with its conclusion and 

future techniques and applications studies. 

2. Literature Survey 
This section reviews state-of-the-art work of meta-learning, multi-modal data 

processing, privacy-preserving federated learning, and reinforcement learning to improve 

decision support systems' flexibility, accuracy, and efficiency.  

Dickson et al. [14] presented an optimized IoT-based model for intelligent agriculture 

and irrigation water management to bridge the challenges faced by Northern Nigeria's 

traditional farming system. The system is designed using the prototyping model with Balsamiq 

and Justinmind tools and implemented using ReactJS, AWS IoT Core, Arduino, and Python on 

Raspberry Pi. The system performed better in enhanced accuracy, efficiency, and user-

friendliness than the existing systems. Limitations include dependency on stable internet access 

and initial setup costs for farmers. 

Govardhan et al. [15] proposed a hybrid framework of computational intelligence, 

reinforcement learning, deep neural networks, and fuzzy logic in improving real-time decision-

making in autonomous systems. Reinforcement learning offers active learning, while DNN 

provides pattern recognition, and Fuzzy Logic addresses the issue of uncertainty. Assessing the 

framework on various simulation tasks in-vehicle navigation, health monitoring, and robotic 

automation enhanced the accuracy of decisions by 25% and decreased response time by 30%. 

Limitations include increased computational complexity and scalability challenges associated 

with large-scale deployments. 

Bhadra et al. [16] proposed integrating Cognitive Internet-of-things with Robotic 

Process Automation to extend automation in industrial processes in the era of Industry 4.0. 

Accordingly, the proposed framework consists of AI-powered IoT and RPA to offer context-

aware, intuitive operations, coupled with automating the most complex workflows. Achieving 

this through innovative architectural semantics, it transforms actionable insights into 

automated, prescriptive actions that foster interoperability and agility. This study shows some 

of the most attractive industrial IoT use cases, but it has scalability limitations and complex 

integration across different systems. 
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Liu et al. [17] focused on using context-aware systems, ubiquitous devices, and 

adaptive learning to enhance current agricultural practices. The research design involves a 

mixed-method approach constituting field experiments, surveys, and interviews. The paper 

analyzes improvements in resource management, crop yield, and environmental sustainability. 

The results indicate that the personalized system enhances the optimization of water and 

chemicals, maintains soil health, and enhances yields. This includes a minimal rate of 

technology dissemination and a high initial investment by rural farmers. 

Nguyen et al. [18] proposed solutions for two challenges in Agriculture 4.0: upgrading 

Context-Aware Systems and handling data heterogeneity. The first contribution is a 

microservice-based architecture, the stack of services for CASs, to allow flexible updates 

without disrupting functionality. The second one introduces CASO, a new ontology for 

modelling heterogeneous data. The third is the development of a DSS for irrigation using a 

specialized ontology, IRRIG. The results show improved irrigation automation; however, the 

limitation involves challenges in large-scale deployment and system integration. 

Supriya et al. [19] aimed to develop sensor-based intelligent recommender systems to 

optimise agriculture-based practices. The system uses advanced sensor technologies in 

integration with data analytics and machine learning algorithms that acquire real-time data from 

weather, soil moisture, and crop health sensors to provide farmers with personalised context-

aware recommendations. Results demonstrate enhanced decision-making and better resource 

management. Limitations include a challenge in data integration across diverse sensor types 

and, for real-time data processing, the need for reliable infrastructure in rural areas. 

a. Research gaps 

The paper highlights big data analytics' role in promoting martial arts culture but 

identifies a few gaps. These include limited real-time integration of data, lack of focus on the 

long-term sustainability of culture, and the need to consider ethics in the use of data. Further, 

difficulties in adopting advanced technologies, adaptation to emerging platforms, and cultural 

nuances across regions have yet to be taken up. Besides, metrics are mostly about digital 

engagement and do not account for qualitative cultural impacts or personal audience 

experiences beyond content. These gaps deserve further exploration in the proposed study. 

3. Proposed Methodology 
The study proposes a CADSS with meta-learning that will help improve adaptability 

and precision in intelligent agriculture and autonomous systems. This becomes necessary 

because of the challenges of heterogeneous data, dynamic environmental conditions, and the 

need for privacy-preserving solutions in such domains. Advanced technologies in this 

framework involve the MAML technique for fast task adaptation, CNNs for enabling spatial 

data processing, and transformer models for temporal data analysis. RL will ensure optimal 

decision-making, while federated learning will protect against data privacy leaks across nodes. 

Key benefits include improved prediction accuracy, increased decision reliability, and efficient 

resource usage, depicted by significant enhancements in experimental results. Applications 

span precision farming, autonomous navigation, and smart irrigation, making the system 

versatile in addressing real-world challenges. The framework advances operational efficiency, 

sustainability, and decision-making in complex, data-driven environments by providing 

dynamic, context-aware responses (Figure 1). 
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Figure 1: Overall architecture of the proposed CADSS-ML framework 

a. Data collection  

The Comprehensive Weather Dataset includes detailed information on meteorological 

conditions for scientific and practical applications [20]. For many years, parts of the world have 

been covered, including critical parameters such as temperature, precipitation, humidity, wind, 

air pressure, and cloud cover. Aggregated from reliable sources such as weather stations and 

satellites, the data is accurate due to quality control measures and is complete with metadata 

for transparency. It also contains historical weather incidents that enable the study of extreme 

conditions. The dataset is made available in structured formats to support various applications: 

climate research, agriculture, energy management, urban planning, and education for 

understanding weather patterns and their impact. 

b. Feature extraction 

Feature extraction is a critical stage in which the system processes the raw input data 

into structured feature representations that capture meaningful patterns. It leverages state-of-

the-art machine learning models tailored to the nature of each data type: spatial, temporal, and 

network topology data. 

(i) Spatial Data Feature Extraction Using CNNs 

The input data consists of various spatial datasets, including geospatial images and field 

maps captured with drones and pre-processed by a CNN model for ingestion. It may also 

involve normalizing pixel values between 0 and 1 and resizing images onto a uniform 

dimension. For example, data sets would be imagery captured from agricultural fields and 

geospatial data from space, which are leveraged in mapping terrain and crop distribution. 

For hierarchical feature extraction, CNN processes the spatial data through 

convolutional, pooling, and fully connected layers. The convolutional layer scans the input data 

by applying filters to detect patterns such as edges and textures. The pooling layer reduces the 

spatial dimensions of data and retains major features to minimize computational costs. 

Flattening changes the pooled feature into a 1D vector for processing by a fully connected layer 

to learn high-level abstractions. The abovementioned operations allow this framework to 

conduct efficient feature extraction for scale decision-making, enabling it to analyze geospatial 

images effectively. The powerful learning ability of CNNs is just right for large-scale structured 

spatial data processing. 

Pseudocode 1: CNN Feature Extraction for Spatial Data 

begin 

    # Input Preparation 
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     Load input image 𝑋 

    Normalize pixel values of 𝑋 

    Resize 𝑋 to standard dimensions 

 

    # Convolution Operation 

     for each filter 𝑊𝑘  in convolution layer: 

         Compute feature map 𝐹𝑠𝑝𝑎𝑡𝑖𝑎𝑙[𝑘] = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(∑( 𝑊𝑘 ∗

𝑋𝑐ℎ𝑎𝑛𝑛𝑒𝑙) + 𝑏𝑘) 

    # Pooling Operation 

    for each feature map 𝐹𝑠𝑝𝑎𝑡𝑖𝑎𝑙[𝑘]: 

          Compute pooled feature map 𝐹𝑝𝑜𝑜𝑙𝑒𝑑[𝑘] =

𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝐹𝑠𝑝𝑎𝑡𝑖𝑎𝑙[𝑘]) 

    # Flattening 

      Flatten all 𝐹𝑝𝑜𝑜𝑙𝑒𝑑[𝑘] into a 1D vector 𝐹𝑓𝑙𝑎𝑡 

    # Fully Connected Layer 

      Compute final feature vector 𝐹𝐶𝑁𝑁 =
𝐹𝑢𝑙𝑙𝑦𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝐹𝑓𝑙𝑎𝑡) 

      return 𝐹𝐶𝑁𝑁 

end 

The pseudocode-1 effectively captures CNN operations, where the process flows from 

input preparation through feature extraction and transformation. It underlines key processes for 

capturing spatial features through convolution, pooling, and flattening. Therefore, the 

structured flow adopted herein is consistent with theoretical conceptualization and is robust and 

suitable for practical application. 

(ii) Temporal Data Feature Extraction Using Transformer Models 

Temporal data has sequential dependencies like time-series data, such as weather 

conditions or crop cycles. The transformers are suitable for modelling this type of dependency 

using self-attention mechanisms. 

Steps: 

Input Embedding: Convert the time-series data 𝑋𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙  into embeddings as in 

equation (1): 

𝐸𝑡 = 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑋𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙)      (1) 

Positional Encoding: Add positional information to the embeddings to capture 

sequence order: 

𝐸𝑡
𝑝𝑜𝑠

= 𝐸𝑡 + 𝑃𝐸𝑡        (2) 

In equation (2) 𝑃𝐸𝑡 =Positional encoding vector. 

Self-Attention Mechanism: Calculate attention weights to capture relationships 

between all-time steps (equation (3)): 

𝐴𝑖𝑗 =
exp (

𝑄𝑖𝐾𝑖
𝑇

√𝑑𝑘
)

∑ exp (
𝑄𝑖𝐾𝑖

𝑇

√𝑑𝑘
)𝑇

𝑗=1

       (3) 

Where, 𝑄, 𝐾, 𝑉: Query, key, and value matrices. 𝑑𝑘 : Dimensionality of the key vector. 

Output Representation: The weighted sum of values produces the final feature vector 

(equation (4)): 
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𝐹𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 = ∑ 𝐴𝑖𝑗 . 𝑉𝑗
𝑇
𝑗=1        (4) 

(iii) Sensor Network Topology Feature Extraction Using Graph Neural Networks 

(GNNs) 

Sensor network topology represents the relationships between sensors or nodes and 

their connections or edges. GNNs are effective at capturing this kind of structural information. 

Steps: 

Node Initialization: 

Initialize node features as 𝐻(0)representing sensor readings.  

Message Passing: Aggregate information from neighbouring nodes to update the 

feature of each node (equation (5)): 

𝑚𝑙
𝑣 = ∑ 𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝐻𝑢

(𝑙−1)
, 𝐻𝑢

𝑙−𝑣 , 𝑒𝑢𝑣) 𝑢𝜖𝒩(𝑣)     (5) 

In the above equation (5), 𝑚𝑙
𝑣: Message aggregated for node 𝑣 at layer 𝑙. 

𝒩(𝑣): neighbouring nodes of 𝑣. 𝑒𝑢𝑣: Edge features between 𝑢 𝑎𝑛𝑑 𝑣. 

Node Update: Update the node features using aggregated messages as in equation (6): 

𝐻𝑣
𝑙 = 𝑈𝑝𝑑𝑎𝑡𝑒(𝐻𝑢

(𝑙−1)
, 𝑀𝑣

(𝑙)
)        (6) 

Graph-Level Feature Representation: Combine node-level features to one graph 

representation (equation (7):  

𝐹𝐺𝑁𝑁 = 𝑃𝑜𝑜𝑙𝑖𝑛𝑔({𝐻𝑣
𝐿|𝑣𝜖𝑉})       (7) 

𝑉: Collection of all nodes. 

𝐿: Number of layers in a GNN 

Unified Features Vector: Now that features have been extracted from each data form, 

accumulate vectors into the unified feature representation, as in equation (8): 

𝐹𝑈𝑛𝑖𝑓𝑖𝑒𝑑 = 𝐹𝐶𝑁𝑁 + 𝐹𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 + 𝐹𝐺𝑁𝑁      (8) 

This consolidated feature vector forms the input to the subsequent context analysis and 

decision-making modules. 

c. Context analysis 

Context analysis fuses the features extracted from spatial, temporal, and network 

topology data to generate an intelligent system with situational awareness. In this framework, 

the attention mechanism will dynamically assign weights to features following their relevance 

to the current scenario. These weighted features are combined into a unified context vector 

representative of the system's state. This adaptive decision-making vector prioritizes the critical 

data in transmission while minimizing less relevant information. The dynamic weighting 

approach enhances the accuracy and responsiveness of the framework in varying conditions. 

Pseudocode 2: Context Analysis with Attention Mechanism 

begin 

   # Input: Feature vectors from CNN, Transformer, and GNN 

     Input Features: 𝐹𝐶𝑁𝑁, 𝐹𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟, 𝐹𝐺𝑁𝑁 

    # Attention Weights Computation 
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     for each feature vector 𝐹𝑖 𝑖𝑛 {𝐹𝐶𝑁𝑁, 𝐹𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟, 𝐹𝐺𝑁𝑁}: 

          Compute relevance score  

𝑒𝑖 = 𝑄𝑢𝑒𝑟𝑦 (𝐹𝑖) ∗ 𝐾𝑒𝑦(𝐹𝑖)/√𝑑𝑘 

          Compute attention weight  

𝛼𝑖 =
exp (𝑒𝑖)

∑ exp (𝑒𝑖)𝑗
∀𝑗  

     # Weighted Feature Combination 

     initialize 𝐹𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = 0 

      for each feature vector 𝐹𝑖 𝑖𝑛 {𝐹𝐶𝑁𝑁 , 𝐹𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 , 𝐹𝐺𝑁𝑁}: 

𝐹𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = ∑ 𝛼𝑖 ∗ 𝐹𝑖
𝑗

 

    # Output: Unified Context Vector 

    return 𝐹𝑐𝑜𝑛𝑡𝑒𝑥𝑡 

end 

 

The pseudocode-2 models, in a systematic manner, the process of context analysis: 

Calculate relevance scores and attention weight for feature vectors, ensuring that critical 

features are given high dynamic priority. Weight combination unifies the context vector 𝐹𝑐𝑜𝑛𝑡𝑒𝑥𝑡 

is essential in an adaptive decision-making process. That flow is structured like the principle-

theoretical one, hence more exact and scalable. 

d. Decision making 

The decision-making module uses the unified context vector to decide the system's 

optimal actions. This module will integrate reinforcement learning (RL) for adaptive control 

and federated learning (FL) for preserving data privacy. RL utilizes a reward function to 

optimize outcomes with balanced utility and cost, hence guaranteed to be adaptive and efficient. 

FL trains models across distributed nodes without sharing raw data, thus safeguarding user 

privacy. It enables a powerful combination of ethics and context-sensitive decision-making in 

dynamic environments, such as agriculture or autonomous systems. 

Pseudocode 3: Decision-Making with Reinforcement and Federated 

Learning 

begin 

    # Input: Unified context vector 𝐹𝑐𝑜𝑛𝑡𝑒𝑥𝑡 

    Input: 𝐹𝑐𝑜𝑛𝑡𝑒𝑥𝑡 

 

    # Reinforcement Learning for Optimal Actions 

    initialize policy 𝜋(𝑠, 𝑎) and reward function 𝑅(𝑠, 𝑎) 

      for each 𝑠𝑡𝑎𝑡𝑒 𝑠 derived from 𝐹𝑐𝑜𝑛𝑡𝑒𝑥𝑡: 

           Select action 𝑎 =  𝑎𝑟𝑔𝑚𝑎𝑥(𝜋(𝑠, 𝑎)) 

           Compute reward 𝑅(𝑠, 𝑎)  =  𝑈𝑡𝑖𝑙𝑖𝑡𝑦(𝑠, 𝑎)  −
 𝐶𝑜𝑠𝑡(𝑠, 𝑎) 

           Update policy 𝜋(𝑠, 𝑎) 𝑢𝑠𝑖𝑛𝑔 𝑅(𝑠, 𝑎) 

 

    # Federated Learning for Privacy Preservation 

     initialize global model weights 𝑊𝑔𝑙𝑜𝑏𝑎𝑙 

     for each local node i: 

           Compute local model weights 𝑊𝑙𝑜𝑐𝑎𝑙[𝑖] using 

𝐹𝑐𝑜𝑛𝑡𝑒𝑥𝑡 at node 𝑖 
       Aggregate global model: 𝑊𝑔𝑙𝑜𝑏𝑎𝑙 =

𝑆𝑢𝑚(𝑊𝑙𝑜𝑐𝑎𝑙[𝑖] ∗
𝑛𝑖

𝑁
) for all nodes 𝑖 

 

    # Output: Optimal Action and Updated Global Model 
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     return Optimal Action 𝑎, Updated Global Model 𝑊𝑔𝑙𝑜𝑏𝑎𝑙 

end 

 

The pseudocode-3 models the decision-making process by integrating reinforcement 

learning with federated learning. RL will make the system choose the optimal action through 

iterative rewards-based policy updates, balancing utility and cost. Meanwhile, FL preserves 

data privacy by aggregating distributed model updates without sharing raw data, making the 

decision ethical. It provides a twofold approach toward capturing the theoretical goals of 

adaptability, efficiency, and privacy preservation with scalability for real-world applications. 

The structured flow ensures robust implementation, fitting well with dynamic and context-

aware system requirements. 

e. Optimization using Reptile algorithm 

Reptile is a meta-learning optimization algorithm of the CADSS framework that can 

enhance adaptability and generalization ability in dynamic environments. This helps the model 

to adapt much faster for new tasks-such as weather or crop requirements-with minimal data and 

training iterations. It first initializes the global model parameters (𝜃) and updates these 

iteratively with adaptations of separate tasks (𝜃𝑖). 

This is done by computing task-specific parameters through gradient descent on the 

task's loss function via an inner loop. The global parameters are updated in the outer loop by 

moving toward the task-specific parameters. The repeated process over multiple tasks will 

ensure that the model learns to generalize well, which makes it highly efficient for real-time, 

context-aware decision-making in agriculture and autonomous systems. 

 

Figure 2: Flowchart for Reptile Algorithm in CADSS 

The flowchart in Figure 2 elaborates on implementing the Reptile algorithm in CADSS. 

It gives an idea of how task sampling is iteratively performed, along with inner loop updates 
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regarding task-specific learning and an outer loop update regarding the optimization of global 

parameters. Each step logically illustrates how smoothly the model flows from initialising 

parameters to finding a generalized model. This is achieved through a structured approach; 

hence, the framework shall be efficient and scalable, thus fitting into dynamic systems. The 

flowchart shows how resource-efficient training, fast adaptation, and robust decisions by the 

Reptile algorithm are made possible, forming an integral part of the CADSS framework. 

4. Results and Discussion 
The proposed CADSS-ML framework significantly outperforms baseline models due 

to its robust integration of advanced techniques. Combining hierarchical meta-learning (MAML 

and Reptile), CNNs for spatial data, and transformers for temporal analysis achieves a 20% 

improvement in prediction accuracy. GNNs and attention mechanisms enhance decision 

reliability by 15% by dynamically prioritizing contextual variables and modelling sensor 

relationships. Reinforcement learning with reward shaping and federated learning ensures 

optimal control actions and privacy, improving resource utilization by 12%. These innovations 

enable precise predictions, reliable decisions, and efficient resource use, making the system 

ideal for precision farming and intelligent irrigation applications.  

a. Performance Metrics 

In this section, the proposed CADSS-ML method is compared with methods like Rule-

Based DSS [18], Fuzzy Logic-Based Systems [15], and IoT-based models [14] on key metrics 

like prediction accuracy, decision reliability and resource utilization. CADSS-ML promises 

superior adaptation to dynamic environments and better handling of complex, heterogeneous 

data than the rigid rules from Rule-Based DSS and the imprecision of Fuzzy Logic. On decision 

reliability, CADSS-ML is second to none; it embeds reinforcement learning, attention 

mechanisms, and federated learning for robust and context-aware decision-making under 

uncertainty. On the other hand, a Rule-Based DSS cannot operate under unforeseeable 

conditions, and Fuzzy Logic does not have the robustness of CADSS-ML. Resource utilization: 

CADSS-ML dynamically optimizes resources using reinforcement learning and reward 

shaping, together with federated learning to reduce overhead. While an IoT-based model 

improves resource utilization, it still does not rise to the level of real-time, adaptive optimization 

of CADSS-ML. CADSS-ML offers better adaptability, precision, and efficiency than traditional 

and RL-based methods. 

b. Prediction Accuracy 

Prediction Accuracy is the basic measure of any model's performance. It relates to the 

ratio of proper predictions regarding outcomes to the total number of predictions. Prediction 

accuracy can be obtained from Equation (9). 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
× 100   (9) 

The CADSS-ML framework's superior design is responsible for its 20% higher 

prediction accuracy than baseline models. Rapid adaptation to varied tasks and surroundings is 

possible with minimum training data using the meta-learning technique (MAML and Reptile). 

Time-varying patterns, including shifts in weather or soil conditions, are best captured by 

transformers, whereas convolutional neural networks (CNNs) enhance spatial feature 

extraction. CADSS-ML outperforms conventional models by incorporating various techniques 

to decrease misclassifications and produce more accurate predictions for soil moisture levels 

and crop yields. 
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Figure 3 shows the prediction accuracy analysis of the proposed method. The graph of 

prediction accuracy demonstrates that the CADSS-ML method outperforms all existing models. 

CADSS-ML is superior to others because its meta-learning framework can quickly adapt to 

dynamic conditions and utilize the power of deep learning models like CNN, transformers, and 

GNN. While Rule-Based DSS, Fuzzy Logic, and IoT-based models cannot handle data 

heterogeneity and adaptability, the prediction accuracy is lower and more static than CADSS-

ML, making CADSS-ML more reliable in diverse contexts. 

 

Figure 3: Prediction Accuracy Analysis 

c. Decision reliability  

Decision reliability is the system's capability to make consistent and correct decisions 

under changed conditions. It is the proportion of the number of correct choices against the total 

number of actions that should align with optimal outcomes. Equation (10) can achieve this. 

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠
× 100  (10) 

GNNs process the spatial relationships in sensor networks so that decisions consider 

other interrelated factors, such as soil moisture and the condition of other crops nearby. The 

attention mechanism dynamically prioritises the critical variables, enabling the system to adapt 

to abrupt changes in weather conditions, for example, or modification of environmental factors. 

Moreover, meta-learning allows fast adaptation to new tasks, which makes it vital in unseen 

scenarios. Besides, reinforcement learning with reward shaping allows for optimal decisions by 

modifying control actions through contextual feedback, such as balancing water distribution or 

energy consumption. 

 

Figure 4: Decision Reliability Analysis 
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Figure 4 shows that the CADSS-ML method outperforms the existing models. Due to 

the utilization of federated learning in CADSS-ML, resource usage will be optimized by 

ensuring data privacy and effective data sharing across sensor nodes, avoiding heavy 

centralized processing. This also uses meta-learning algorithms that adapt quickly to new tasks, 

improving resource efficiency. Contrasting these, Rule-Based DSS, Fuzzy Logic, and IoT-based 

models tend to be more resource-intensive because of the central computation involved and 

lack of adaptive learning; thus, they use resources less optimally. 

d. Resource Utilization  

Resource utilization is the efficiency of a system's available resources, energy, and 

bandwidth to realize its output. High resource utilization means less waste and close to optimum 

performance. It is shown in Equation (11). 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (𝑈) =
𝑈𝑠𝑒𝑓𝑢𝑙 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑈𝑡𝑖𝑙𝑖𝑧𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
× 100  (11) 

The CADSS-ML framework increases utilization by 12%, integrating reinforcement 

learning with reward shaping to optimize decisions to reduce waste while meeting performance 

goals. Federated learning reduces computational overhead by enabling decentralized 

processing, and attention mechanisms ensure that resources are allocated only where needed. 

For instance, smart irrigation dynamically adjusts water distribution based on soil and weather 

data to reduce overwatering. Compared to 75% utilization of baseline models, CADSS-ML 

demonstrates 87% in usage efficiency and adapts its resource usage to a wider range of 

scenarios. 

 

Figure 5: Resource Utilization Analysis 

Figure 5 shows that the CADSS-ML method consistently outperforms other models 

regarding reliable decisions. The CADSS-ML, with reinforcement learning, reward shaping, 

and context-aware features, will adapt faster to changing environments and, hence, be more 

dependable in decision-making. On the other hand, Rule-Based DSS, Fuzzy Logic, and IoT-

based models face uncertainty and lack adaptability, often resulting in less reliable decisions in 

dynamic contexts. The ability of CADSS-ML to handle heterogeneous data and generalize to 

new situations enhances its decision reliability. 
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5. Conclusion and Future works  
The proposed framework CADSS has excellent potential in solving the challenges 

presented by heterogeneous data, dynamic environmental conditions, and concerns about 

privacy in intelligent agriculture and autonomous systems. Advanced technologies such as 

MAML, CNNs, Transformer models, and GNNs are integrated into the system for high 

adaptability and precision decision-making. Federated Learning ensures data privacy, while 

Reinforcement Learning ensures the optimality of control actions regarding a specific context. 

The effectiveness of this framework has been validated through experimental results that have 

shown improved performances concerning prediction accuracy, reliability of decisions, and use 

of resources. Applications, ranging from precision farming to intelligent irrigation and 

autonomous navigation, have proven their versatility in addressing real-world problems with 

guaranteed operational efficiency and sustainability. 

Future work will relate to the deeper real-time integration of multimodal data and the 

introduction of self-evolving models that could adapt to unforeseen situations. Domain-specific 

customization for other verticals, like healthcare and urban planning, could also widen the 

application of this framework. More solid ethical frameworks regarding data usage and 

scalability in large-scale deployments are planned to make the system even more practical and 

effective. 
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