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A B S T R A C T  

                          Autonomous vehicles (AVs) depend on precise and efficient object detection (OD) for safe 

navigation in complex and dynamic environments. Traditional Convolutional Neural Networks 

(CNNs) excel at extracting local features but face limitations in capturing long-range 

dependencies, leading to challenges in scenarios involving occlusion, varying lighting, and 

diverse object scales. This paper proposes HCNN-TMOD, a hybrid framework that combines 

CNNs and Transformer Models (TM) to overcome these challenges and enhance object detection 

(OD) accuracy and speed for real-time autonomous vehicle applications. HCNN-TMOD utilizes 

CNNs for robust local feature extraction and TMs for capturing global contextual relationships. A 

feature fusion mechanism integrates outputs from both architectures, enabling improved spatial 

and semantic representations. The system is optimized for latency and hardware constraints and 

evaluated on various datasets like vehicle, pedestrians and traffic light detection, demonstrating 

suitability for real-world AV scenarios. Results show a 15% improvement in mean Average 

Precision (mAP) and a 20% reduction in detection latency compared to traditional CNN-based 

approaches. HCNN-TMOD performs exceptionally well in challenging conditions such as 

occlusion and low-light environments. The integration of CNNs and Transformers in this hybrid 

approach provides a significant advancement in OD for AVs, paving the way for safer, more 

reliable, and efficient real-time navigation systems.  

 

Keywords: IoT, Waste Management, Smart Campuses, Genetic Algorithms, Reinforcement Learning, 

Optimization, Real-Time Monitoring. 

1. Introduction 
Autonomous vehicles (AVs) have been perceived as an innovative transportation technology 

where development enhances safety, efficiency, and accessibility [1]. The AV's main purpose is to 

reduce human involvement to improve road safety, decrease traffic congestion, and enhance 

transportation efficiency [2]. This is at the core of object detection, whereby the vehicle sees and 

accurately interprets its environment [3]. OD is one of the major enablers of this technology. As an 

important module in perception systems, it makes vehicles capable of identifying, classifying, and 

tracking other moving objects, such as pedestrians, cyclists, and other vehicles. This system supports 

real-time decision-making, allowing AVs to move safely and efficiently in dynamic environments and 

complex spaces [4]. Dominantly based on CNNs, the traditional methods for OD successfully 

extracted spatial features [5].  

However, such rapid evolution of the use cases for AVs has been found to expose the limitations 

of CNNs in handling challenges, especially occluded objects, changing illumination conditions, and 

varied scales of objects [6]. The ever-increasing demand for more sophisticated OD systems that can 
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handle such challenges as AVs becoming more built-in in real-world environments has become more 

critical than ever [7]. Recent innovations within the area of TM have arisen with a new paradigm 

within computer vision [8]. Unlike CNNs, TMs are good at capturing long-range dependencies and 

global contextual relationships in an image. The ability to analyze spatial and semantic interactions 

across the image by leveraging self-attention mechanisms [9] makes TMs much more exhaustive than 

CNNs. However, computational intensity has been a concern about the feasibility of TMs for real-

time applications in resource-constrained AVs. Hence, many researchers have gone into hybrid 

architectures, merging strengths from both CNNs and TMs to develop efficient and robust object 

detection systems [10]. 

Integrating CNNs and TMs is a great step toward conquering their limits in standalone 

approaches. CNNs can efficiently handle local features while TMs present a global perspective of the 

scene. The HCNN-TMOD framework proposed herein integrates CNNs for local feature extraction 

with TMs for global contextual relationships capturing. A mechanism of feature fusion combines 

outputs from both architectures in order to further improve spatial and semantic representations. With 

that in mind, the model should be optimized on latency and even hardware constraints as it is prepared 

for training benchmarks such as those of KITTI. Besides, it is trained with performance metrics such 

as average reduction in latency while mAP or mean Average Precision. The important contribution of 

this paper is 

• To enhance object detection accuracy by combining CNNs and TMs in a hybrid 

framework. 

• To reduce detection latency by optimizing the model for real-time applications. 

• To improve performance in challenging scenarios like occlusion and varying lighting 

conditions. 

• To demonstrate the framework’s applicability through extensive evaluation on benchmark 

datasets. 

The paper starts out by introducing the problem and significance of OD in AVs. It then reviews 

related work, details the HCNN-TMOD framework, discusses experimental results, and concludes 

with implications and future directions. 

2. Literature Review 
Author  Proposed Work Technique Used Result Limitation 

Benjumea, 

Aduen, et al. 

[11] 

Enhancing 

YOLOv5's 

recognition of small 

objects for use in 

autonomous 

vehicles. 

YOLOv5 

features improved 

modules for detecting 

small objects. 

Enhanced small-

object recognition 

accuracy in complex 

autonomous driving 

situations. 

The ability to 

recognize larger items 

is impaired as 

compared to the 

baseline approaches. 

Guo, 

Jingda, et al. 

[12] 

Fusion of 

spatial features for 

3D object detection 

through cooperative 

methods. 

Spatial feature 

fusion and 

cooperative neural 

networks. 

Optimal 3D object 

detection performance 

on datasets containing 

several modalities. 

Deploying in 

real-time is hindered 

by high processing 

needs. 

Dai, Xuerui, 

et al. [13] 

Finding objects 

in thermal infrared 

pictures for 

Thermal Infrared 

Recognition Network 

The use of thermal 

infrared photography 

improved detection 

Model 

generalization has 

issues and is not very 
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driverless cars. (TIRNet). accuracy in low-light 

circumstances. 

adaptable to RGB 

datasets. 

Sukkar, 

Majdi, et al. [14] 

Enhancing 

pedestrian tracking 

using advanced 

deep learning 

techniques. 

Deep learning-

based tracking 

employing better 

motion prediction. 

Accuracy and 

recall metrics for 

pedestrian tracking 

significantly improved. 

Inconsistent 

performance and 

vulnerable to 

obstructions in busy 

environments. 

Saillaja, V., 

et al. [15] 

IoT-embedded 

traffic cones for 

roadwork safety. 

IoT-based 

system integrated 

with CNN for object 

detection. 

Improving 

roadwork safety in 

real-time 

circumstances by 

effective identification 

of traffic cones. 

Capacity for 

detecting non-

standard traffic cones 

or inclement weather 

is limited. 

Alaba, 

Simegnew Y., et 

al. [16] 

Autonomous 

vehicle 3D object 

identification via 

multimodal fusion. 

Multimodal data 

fusion using 

advanced deep 

learning models. 

Better detection 

performance across 

different object types 

using complementary 

sensory inputs. 

High 

computational 

overhead impacts 

scalability and real-

time responsiveness. 

Vaithianath

an, 

Muthukumaran 

[17] 

FPGA-based 

systems for real-

time object 

identification and 

labelling. 

FPGA 

implementation with 

optimal object 

detection in real-time. 

Real-time object 

detection with minimal 

latency is suitable for 

autonomous systems. 

Lower detection 

accuracy compared to 

software-based 

implementations. 

Yang, 

Ming, and 

Xiangyu Fan  

[18] 

Simple model 

for detecting 

objects in real-time 

environments. 

YOLOv8-Lite, a 

lightweight deep 

learning model. 

Achieved faster 

inference speeds with 

satisfactory detection 

accuracy in real-time 

systems. 

The trade-off 

between lightweight 

design and overall 

detection precision 

for complex object 

types. 

 

3. Proposed methodology 
a) Dataset Explanation 

Vehicle Detection dataset: The Self-Driving Cars dataset is a comprehensive, annotated image 

dataset for developing an autonomous driving system's object detection and scene understanding 

algorithms. It contains many scenarios, including varying types of roads, traffic flow patterns, 

pedestrian data and challenging environmental conditions regarding lighting changes and weather 

variations [19].  

b) Overview of the HCNN-TMOD Method 

The HCNN-TMOD combines CNNs with Transformers for fast object detection in autonomous 

vehicles. In this step, data preparation includes augmentation to deal with occlusion, lighting 

variations, and diverse object scales. In this hybrid framework, CNNs are adopted for the purpose of 

extracting geographical features like textures and edges, while Transformers are applied to modelling 

global contextual dependencies with self-attention mechanisms. A feature fusion module integrates 

spatial and semantic features into enhanced scene understanding. Real-time optimization is achieved 
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through model pruning, quantization, and parallelization for low-latency inference. The model is 

trained and fine-tuned on the annotated datasets, showing a 15% mAP improvement and a 20% 

reduction in latency for robust deployment. Figure 1 shows the work process of the HCNN-TMOD 

model. 

 

Figure 1. Graphical representation of HCNN-TMOD Method 

c) Data Collection and Preprocessing 

The images from the dataset are collected for object detection on the road for self-driving 

vehicles. These images undergo preprocessing steps like Normalization, which rescales pixel values to 

a normalized range, often between 0 and 1 or −1 and 1, so the input into a neural network can be 

standardized. Data alignment, ensuring the bounding box annotations align with the actual image they 

refer to. Image resizing to a standard resolution (e.g., 224x224 or 512x512) with preserved aspect 

ratios and outlier removal by filtering out images having incomplete or erroneous annotations to 

preserve the quality and integrity of the dataset in its subsequent modelling tasks. 

d) Data Augmentation 

The collected dataset images are further enhanced by data augmentation, creating a simulation of 

what one might encounter while driving. This includes addressing occlusion by adding synthetic 

objects over pictures or parts of the object via bounding box data masking, varying light conditions 

such as brighter or more contrasting for darkness or light, and realism with synthetic effects such as 

glare or shadow in different situations. It handles the diverse scales of objects by resizing objects and 

bounding boxes, keeping the aspect ratios, applying zoom-in/out transformations, and cropping to 

focus on specific regions. Figure 2 shows the different scenarios that the AVs face. 
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Figure 2. Different situations for the autonomous vehicle to drive 

e) Hybrid Framework Architecture 

This architecture combines HCNNs for local feature extraction with Transformers for a global 

contextual representation, attempting to combine the best of both paradigms to achieve robust and 

scalable feature learning on tasks such as object detection, segmentation, or classification. 

f) Local Feature Extraction using HCNNs 

CNNs are designed to exploit the hierarchical structure of images by extracting meaningful 

features. This process starts from low-level features, such as edges, and continues to higher-level 

abstract features, such as textures and patterns. Most edge detection in CNN happens in the early 

layers, as shown in Figure 3(b). Small filters, 3×3 kernels, detect simple geometric structures like 

edges, lines, and corners by analyzing changes in pixel intensity. CNNs extract more complex textures 

and spatial features in the middle layers by composing low-level features from the early layers. These 

layers grasp patterns, shapes, and spatial relationships crucial for understanding object structures. At 

higher levels, multi-scale feature extraction allows the identification of items varying in size. This is 

realized by using convolutional kernels with various sizes (3×3 and 5×5) and applying dilated 

convolutions, which enlarge the receptive field without increasing the kernel size. 

𝑓𝑖𝑗
𝑘 = 𝜎(∑ ∑ 𝑤𝑚𝑛

𝑘 𝑥(𝑖+𝑑𝑚)(𝑗+𝑑𝑛) + 𝑏
𝑘𝑁

𝑛=1
𝑀
𝑚=1 )      (1) 

where 𝑓𝑖𝑗
𝑘 is the feature map value at the position (𝑖, 𝑗) for filter 𝑘, 𝑤𝑚𝑛

𝑘  is the weight of the 𝑚 × 𝑛 

filter 𝑘, 𝑥(𝑖+𝑑𝑚)(𝑗+𝑑𝑛) is the input pixel value, 𝑏𝑘 is the bias term, and 𝜎(⋅) is the activation function 

(e.g., ReLU), and 𝑑 is the dilation rate.  
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(a) 

 

(b) 

Figure 3(a) .Original image and 2(b) Edge detected image 

g) Global Contextual Representation Using Transformers 

The Transformers are good at capturing global contextual representations by modelling the 

relationship between objects and resolving occlusions or spatial inconsistencies. It takes as input 

flattened local features extracted from a CNN. These features are then fed into the self-attention 

mechanism, allowing the model to focus on every part of the feature map and catch global 

dependencies and relationships across the input. Positional encoding has been introduced to 

counteract Transformers' intrinsic lack of spatial awareness. This encoding integrates spatial 

information into the feature embeddings, ensuring that the model preserves the positional context of 

each feature within the global representation. This helps improve the modelling of interactions 

between spatially distant objects and reduces the limitations brought about by occlusions or spatial 

misalignments in the original image data. The core of the transformer mechanism is defined as in 

equation 2. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉) = {
𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (

𝑄𝐾𝑇

√𝑑𝑘
)𝑉

𝑄 = 𝑊𝑄𝑋,   𝐾 = 𝑊𝐾𝑋,   𝑉 = 𝑊𝑉𝑋
                 (2)

   

where 𝑄 is the queue matrix, 𝐾 is the key matrix, 𝑉 is the value matrix, 𝑋 is the input feature map, 

𝑊𝑄, 𝑊𝐾,𝑊𝑉 is the learnable projection matrices. 𝑑𝑘 is the dimensionality of 𝐾. 

h) Feature Fusion Mechanism 

The feature fusion mechanism combines local features from CNNs, which capture fine-grained 

spatial details, with global context from Transformers, which captures long-range dependencies and 

relationships. Such fusion combines spatial and semantic representations to understand the scene 

better. Figure 4 shows the graphical representation of the feature fusion equation. 
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Figure 4. Graphical representation of the feature fusion equation. 

Input Features: Let 𝐹𝑙𝑜𝑐𝑎𝑙 ∈ 𝑅
𝐻×𝑊×𝐶𝑙𝑜𝑐𝑎𝑙 represent the local features extracted from the CNN. 

where, 𝐻,𝑊, 𝑎𝑛𝑑 𝐶𝑙𝑜𝑐𝑎𝑙 are the height, width, and channel dimensions, respectively. Let 𝐹𝑔𝑙𝑜𝑏𝑎𝑙 ∈

𝑅𝑁×𝐶𝑔𝑙𝑜𝑏𝑎𝑙  represent the global features extracted from the Transformer. where, 𝑁 is the number of 

tokens (flattened spatial regions) and 𝐶𝑔𝑙𝑜𝑏𝑎𝑙 is the feature dimension. 

Dimensional Alignment: Appling a linear projection 𝑊𝑙𝑜𝑐𝑎𝑙 ∈ 𝑅
 (𝐶𝑙𝑜𝑐𝑎𝑙×𝐶) to project 𝐹𝑙𝑜𝑐𝑎𝑙  to a 

unified dimension 𝐶 is shown in equation 3. 

 𝐹𝑙𝑜𝑐𝑎𝑙
′ = 𝑅𝑒𝐿𝑈(𝐹𝑙𝑜𝑐𝑎𝑙𝑊𝑙𝑜𝑐𝑎𝑙)        (3)

  

Similarly, project 𝐹𝑔𝑙𝑜𝑏𝑎𝑙 using 𝑊𝑔𝑙𝑜𝑏𝑎𝑙 ∈ 𝑅
𝐶𝑔𝑙𝑜𝑏𝑎𝑙 × 𝐶 is shown in equation 4.  

𝐹𝑔𝑙𝑜𝑏𝑎𝑙
′ = 𝑅𝑒𝐿𝑈(𝐹𝑔𝑙𝑜𝑏𝑎𝑙𝑊𝑔𝑙𝑜𝑏𝑎𝑙)        (4) 

Attention-Based Weighting: Compute attention weights to prioritize critical features from both 

sources. Let 𝛼 and 𝛽 represent attention weights for 𝐹𝑙𝑜𝑐𝑎𝑙
′  and 𝐹𝑔𝑙𝑜𝑏𝑎𝑙

′ , respectively. Attention is 

computed using a learnable parameterized mechanism, as shown in equations 5 and 6. 

𝛼 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝛼[𝐹𝑙𝑜𝑐𝑎𝑙
′ , 𝐹𝑔𝑙𝑜𝑏𝑎𝑙

′ ])            (5)  

𝛽 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝛽[𝐹𝑙𝑜𝑐𝑎𝑙
′ , 𝐹𝑔𝑙𝑜𝑏𝑎𝑙

′ ])            (6)  

where 𝑊𝛼  and 𝑊𝛽 are learnable weights, and the softmax ensures the attention weights are 

normalized. 

Feature Fusion: The feature fusion mechanism integrates local features 𝐹𝑙𝑜𝑐𝑎𝑙
′  from the CNN and 

global features 𝐹𝑔𝑙𝑜𝑏𝑎𝑙
′  from the Transformer to create a unified representation 𝐹𝑓𝑢𝑠𝑒𝑑. This is 

achieved through equation 7.  

𝐹𝑓𝑢𝑠𝑒𝑑 = 𝛼 ⊙ 𝐹𝑙𝑜𝑐𝑎𝑙
′ + 𝛽 ⊙ 𝐹𝑔𝑙𝑜𝑏𝑎𝑙

′                    (7)

  

where ⊙ denoting element-wise multiplication, ensuring each feature source is appropriately 

scaled. The resulting fused feature 𝐹𝑓𝑢𝑠𝑒𝑑 ∈ 𝑅
𝐻×𝑊×𝐶  fusing spatial details and global semantics 

provides a rich representation, enhancing the model's understanding of complex scenes. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 5(a). Traffic light detection, (b) Truck detection, (c) Pedestrian detection, and (d) Car detection 

output of the proposed HCNN-TMOD method 

Figure 5 shows the object detection effect of the HCNN-TMOD method. Figure 5(a) shows that a 

traffic light can be detected successfully, and the accuracy is very high in such a complex urban 

environment. Figure 5(b) presents that the system can accurately detect a truck to navigate an 

autonomous vehicle in an industrial district. Figure 5(c) demonstrates the model's effectiveness in 

detecting a pedestrian on a busy street to guarantee safety and real-time adaptability. Lastly, Figure 

5(d) (description needed) completes the robust detection of various object categories in diverse 

conditions, including varying lighting, occlusion, and scale. Combining CNNs for local feature 

extraction and Transformers for global context in HCNN-TMOD enables accurate object detection 

critical for autonomous vehicle operations. 

4. Result and Discussion 
a) Performance Metrics 

Comparing HCNN-TMOD with the methods such as YOLO-Z [11], CoFF [12], and YOLOv8-

Lite [18] has been shown in some parameters regarding mAP, latency, and FPS. From the comparison, 

HCNN-TMOD performs better than the compared methods in having higher mAP for precise object 

detection, lower latency for real-time processing, and faster FPS for smoother frame analysis. This 

confirms that this method is superior in balancing precision and efficiency, which strongly suits the 

requirements of applying an autonomous vehicle.  
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Mean Average Precision (mAP) is used in object detection as a metric to evaluate the model's 

ability to detect and localize objects. It summarizes the precision-recall curve by calculating each 

object category's average precision (AP) and averaging these APs across all categories. It is calculated 

as in equation 8. 

𝑚𝐴𝑃 =

{
 
 

 
 

1

𝐶
∑ 𝐴𝑃𝑖
𝐶
𝑖=1

𝐴𝑃 = ∫ 𝑃(𝑅)
1

0
𝑑𝑅

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 ,    𝑅 =

𝑇𝑃

𝑇𝑃+𝐹𝑁

               (8) 

  

where C is the number of object classifications. 𝐴𝑃 represents the precision-recall (P-R) curve 

cross-section for a specific class of objects. Precision (𝑃) calculates the fraction of all anticipated 

positive samples that turn out to be accurate and recall (𝑅) is the proportion of accurately anticipated 

positive samples to the total number of actual positives. 𝑇𝑃 is True positive, 𝐹𝑃 is the False Positive 

and 𝐹𝑁 is the False Negative. 

 

Figure 6. Precision-Recall curve 

 

Figure 7. Average Precision Analysis 

Figure 6 plots the precision vs recall for each class on the HCNN-TMOD and the conventional 

methods like YOLO-Z, CoFF, and YOLOv8-Lite. The curve shows how the respective methods 
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handle the precision when increasing the recall, while the area under the curve (AP) quantifies each 

performance. Figure 7 compares AP values across different categories between the methods. The 

colours of the bars represent one of the methods, and the horizontal line is the mean Average Precision 

overall categories. These visualizations show that HCNN-TMOD consistently achieves higher 

precision-recall areas and mean AP values than traditional methods, especially in the more difficult 

object categories. This proves the hybrid framework's better detection capability and robustness for 

dynamic autonomous driving. 

Latency (ms/frame): Latency refers to the processing time of a frame through an object detection 

system, usually measured in milliseconds per frame (ms/frame). It's one of the most important metrics 

for real-time applications like self-driving cars, where decisions must be made quickly. Latency is 

calculated by equation 9.  

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 =
𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝑁 𝐹𝑟𝑎𝑚𝑒𝑠

𝑁
                    (9)

  

where 𝑁 is the number of frames processed, 𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 is the cumulative time 

taken to process 𝑁 frames. 

 

Figure 8. Latency Analysis 

Figure 8 shows cumulative latency trends for four methods, HCNN-TMOD, YOLO-Z, CoFF, and 

YOLOv8-Lite, over multiple frames. The Y-axis displays cumulative latency in milliseconds, and the 

X-axis shows the number of frames. Among the four, HCNN-TMOD has the lowest accumulation of 

latency. Hence, it has the best execution time, followed by YOLO-Z and YOLOv8-Lite, with 

increased values of cumulative latency. The graph helps compare methods' scalability and 

performance as more frames are processed. 

b) Frames Per Second (FPS) 

The quantity of frames that a system can handle in a second is known as frames per second, or 

FPS. This is crucial for assessing real-time object detection systems, especially for an autonomous 

vehicle, since a higher FPS ensures timely decisions and smooth operation. Equation 10 provides this 

information. 
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𝐹𝑃𝑆 =
1

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠/𝑓𝑟𝑎𝑚𝑒)
                 (10) 

where 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠/𝑓𝑟𝑎𝑚𝑒) is the time taken to process a single frame. 

 

Figure 9. Latency Analysis 

Figure 9 shows latency per frame for different methods, HCNN-TMOD, YOLO-Z, CoFF, and 

YOLOv8-Lite. The Y-axis shows the latency per frame in milliseconds, while the X-axis shows the 

total number of frames processed. The size of the bubbles reflects the relative importance or weight of 

latency for a method. In this sense, HCNN-TMOD has a continuous lower latency, while YOLO-Z 

and YOLOv8-Lite have higher latencies with larger sizes of bubbles. The chart elaborates on HCNN-

TMOD's lead for real-time applications. 

5. Conclusion 
In the final analysis, HCNN-TMOD is the breakthrough in object detection for autonomous 

vehicles with better accuracy and speed, which allows real-time navigation. This hybrid framework 

combines the strengths of CNNs in local feature extraction and TMs in capturing global context to 

compensate for traditional CNN-based approaches' shortcomings. The proposed system presents a 

15% mean Average Precision (mAP) improvement. It reduces detection latency by 20%, effectively 

dealing with more complex and dynamic environments with occlusion and under light conditions. 

Being able to handle objects in various scales with great flexibility concerning different lighting 

conditions makes HCNN-TMOD potentially one of the best solutions in real-world applications of 

AVs. The model still needs to be improved for large-scale environments or highly cluttered scenes. 

One possible direction of future research could be integrating real-time adaptation mechanisms for 

AVs in highly dynamic environments further to increase the model's robustness to fast surroundings 

changes. 
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