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A B S T R A C T  

                          E-commerce supply chains function in ever-changing settings, requiring precise demand 

forecasting to ensure efficient operations, reduce costs, and improve customer satisfaction. 

Traditional forecasting methods often fail to capture non-linear patterns and temporal 

dependencies inherent in time-series data, limiting their effectiveness. This paper proposes an 

ESCLSTM technique to enhance e-commerce supply chains (ESC) by leveraging Long Short-

Term Memory (LSTM) networks to analyse data sequentially and forecast. The ESCLSTM 

methodology begins with collecting historical sales and inventory data from an open-source e-

commerce dataset. The data is preprocessed through missing value imputation, normalization, and 

time-series decomposition to prepare it for modelling. LSTM networks, designed to capture 

sequential dependencies, are appraised and trained using measures like Mean Absolute and Root 

Mean Square Error, with hyperparameters optimized through grid search. Key findings reveal that 

the LSTM model outperforms traditional approaches, achieving a 20% reduction in MAE and a 

25% improvement in RMSE. The multivariate LSTM model demonstrates superior performance 

in capturing complex relationships between features, leading to more accurate predictions of 

demand trends. In conclusion, the study highlights the potential of LSTM networks to 

revolutionize demand forecasting in e-commerce supply chains, offering a robust and scalable 

solution for handling the complexities of modern logistics.  

 

Keywords: E-commerce supply chains, Demand forecasting, Time-series forecasting, Long Short-
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1. Introduction 
E-commerce has been one of the great forces in world trade and has revolutionized 

business operations and how consumers relate to purchasing products and services. In the 

past decade, fast growth in e-commerce platforms has changed the face of traditional supply 

chain management, emphasizing speed, accuracy, and adaptability to meet ever-evolving 

consumer demands [1]. Today's modern e-commerce supply chains are complex webs that 

bring multiple stakeholders (manufacturers, distributors, and logistics providers) together in 

the delivery of services and goods in an effective manner. Advanced forecasting techniques 

significantly fuel these supply chains for demand forecasting, optimization, and smoothing 

operations [2]. Accurate demand forecasting is crucial in e-commerce because unstable 

consumer behaviour, seasonal variations, and promotional events strongly influence supply 

chain dynamics. An essential element in supply chain management for a long time has been 
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time-series forecasting, enabling companies to predict future demand using past information 

[3]. Figure 1 shows the overview of the e-commerce supply chain. 

 

Figure 1. Supply chain for online stores 

LSTM networks, a type of RNN, have been proven to have an exceptional potential to 

overcome the shortcomings of traditional forecasting methods by learning complicated 

patterns and relationships within time-series data [4]. In the dynamic and competitive world 

of e-commerce, demand forecasting goes far beyond the simple prediction of sales [5]. 

Leveraging LSTM networks provides a way to achieve more accurate and resilient 

predictions, equipping businesses to address the constantly evolving challenges faced in 

modern supply chains [6]. The focus is on how to harvest the power of LSTM in improving 

the efficiency and scalability of e-commerce supply chains. Traditional forecasting models 

face a few major challenges [7], including non-linear relationships that arise from the impact 

of consumer behaviour, promotions, and other external factors, as well as the difficulty of 

capturing time-series data that is dependent on both the short and long term [8]. Another 

fundamental challenge lies in effectively incorporating all these heterogeneous features—

inventory levels, seasonal trends, and so forth—into a single model. What is worse, the 

scalability of traditional approaches usually becomes insufficient when working with big data 

coming from e-commerce platforms [9]. 

This paper, therefore, presents the proposed methodology, ESCLSTM, which will begin 

by gathering historical sales and inventory data from an open-source e-commerce dataset. 

Preprocessing includes handling missing values, normalizing features, and time-series 

decomposition. Modelling sequential dependencies is performed using the LSTM networks, 

with hyperparameters tuned via a grid search to optimize performance. The models are then 

evaluated using measures like Mean Absolute and Root Mean Square Error and compared to 

traditional methods like ARIMA. A multivariate LSTM model has also been developed to 

include more features, such as promotions and seasonal trends, to increase the accuracy of the 

prediction. 
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The primary significance of the paper is 

• To propose ESCLSTM, a novel approach using LSTM networks for e-commerce 

supply chain demand forecasting. 

• To demonstrate LSTM’s ability to outperform traditional methods in capturing 

non-linear and temporal dependencies. 

• To develop a multivariate model integrating diverse features for improved 

forecasting accuracy. 

• To empirically validate the model’s performance using MAE and RMSE metrics. 

The general format of the paper: Part 1 lays out the purpose and scope of the 

investigation. Part 2 reviews research in this field. Part 3 details the methodology. Part 4 

delves into the results. Part 5 addresses prospects for the future and their ramifications. 

2. Literature Review 
Author Name Proposed 

Work 
Technique 

Used 
Result Limitation 

Xie, Lun, et al. 

[10] 
Sales 

forecasting and 

international e-

commerce supply 

chain management 

Capuchin 

Search Algorithm 

and Artificial 

Neural Networks) 

Improved 

sales prediction 

accuracy and 

optimized SCM 

strategies 

Limited 

testing on diverse 

datasets 

Yan, Yimo, et al. 

[11] 
Reinforcemen

t learning for 

logistics and 

supply chain 

management 

Reinforcemen

t Learning 
Comprehensi

ve analysis of RL 

applications in 

logistics 

Focuses more 

on methodologies 

less on practical 

deployment 

Jebamikyous, 

Hrag, et al. [12] 
Applications 

for online business 

that combine 

blockchain 

technology with 

machine learning 

Machine 

Learning and 

Blockchain 

Enhanced 

data transparency 

and decision-

making 

High 

computational 

overhead and 

implementation 

cost 

Sun, Jun, et al. 

[13] 
Making use of 

time-series data 

and deep learning 

to improve 

optimisation of the 

supply chain 

Advanced 

Machine Learning 

for Time-Series 

Data 

Improved 

supply chain 

efficiency through 

better predictions 

Lacks 

exploration of 

scalability in large 

datasets 

Yalan, Yang, and 

Tang Wei [14] 
Deep logistic 

learning 

framework for e-

commerce 

platforms 

Deep Logistic 

Learning 
Enhanced 

logistic efficiency 

and decision-

making processes 

Limited 

generalization to 

other domains 

Chen, Yali, and 

Xiang Zheng [15] 
International 

online retail 

Machine 

Learning 
Optimized 

supply chain 

Limited focus 

on real-time 
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supply network 

optimization plan 
networks for 

international 

online trade 

operational 

challenges 

Sun, J., et al. [16] Integrating 

deep learning with 

examination of 

time series 

improves supply 

chain efficiency. 

Dynamic 

Time Series and 

Deep Learning 

Achieved 

better efficiency in 

supply chain 

predictions 

Lacks 

scalability 

exploration 

3. Proposed Methodology 

a) Dataset Explanation 

The Kaggle dataset is that of e-commerce transactional data, capturing customer 

purchases made in an online retail store. The key features are InvoiceNo (transaction ID), 

StockCode (product ID), Quantity (units purchased),  Description (product name), 

InvoiceDate (date and time of purchase), CustomerID (unique customer identifier), UnitPrice 

(product price),  and Country (customer's location). The dataset is useful in analysing 

customer purchase behaviour, inventory trends, and market segmentation; hence, it applies to 

several fields, like predictive modelling, sales forecasting, and customer segmentation 

studies. 

b) The ESCLSTM framework 

 

  Figure 2. The ESCLSTM Framework 
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c) Data collection 

Historical sales and inventory data are scraped from an openly available e-commerce 

dataset with important variables, including sales trends, stock levels, and timestamps. The 

dataset offers valuable information in a time series that captures demand patterns, stock 

fluctuations, and seasonal effects. Such data can be represented as a time-series matrix, as in 

equation 1. 

 𝑋 = {𝑥1, 𝑥2, . , 𝑥𝑛)         (1) 

where (𝑥𝑖) relates to individual observations, each further composed of sale data, levels, 

and timestamps of that data entry. This data then acts as a foundation for creating any 

demand forecasting model. 

d) Data Pre-processing 

Preprocessing raw data is crucial for accurate modeling. Missing value imputation fills 

data gaps by mean imputation or interpolation. To make the model more accurate and less 

biased towards larger features, data is normalised by placing it on a scale from 0 to 1 or with 

a mean of 0. Time-series decomposition separates the data into trend, seasonality, and 

residuals. Isolating patterns enhances the feature extraction so that the model can better 

understand the demand trends and forecast well. 

e) Feature Selection and Engineering 

The most crucial aspect of designing a good multivariate time-series data set is 

identifying relevant variables that drive the demand for an e-commerce supply chain. This 

could include temporal dependencies or trends over time and non-linear correlations, such as 

complicated feature interactions. This would ensure that the LSTM network receives the 

proper context to learn from sequential data. 

Identifying Relevant Variables: The selection of demand-forecasting variables is based on 

their ability to explain the time series behavior of target variables. Past demand picks up 

recurring patterns, such as seasonality or long-term growth; the inventory levels capture the 

current stock available for sale that may impact future sales; and promotions and discounts hit 

the spikes or declines in demand driven by external factors like weather, holidays, or 

economic indicators. By inferring important features based on their domain knowledge, 

analyzing correlations to determine their correlation coefficients and possibly even evaluating 

their linear dependence measures with respect to the target variable, they might use mutual 

information or a set of more advanced machine learning techniques like random forests. 

Constructing the Multivariate Dataset: A multivariate time-series dataset contains 

observations of several variables over time. Each feature, or variable, contributes uniquely to 

helping capture temporal and nonlinear dependencies. The data set is organized as shown in 

equation 2. 

𝑋𝑡 = {𝑥𝑡,1, 𝑥𝑡,2, … , 𝑥𝑡,𝑛}, 𝑦𝑡        (2)
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where 𝑋𝑡 is the time-dependent feature vector 𝑡. 𝑥𝑡,𝑖 is the value of the 𝑖-th feature at a 

time 𝑡, and 𝑦𝑡 is the target variable at time 𝑡 (e.g., demand). 

f) Temporal and non-linear dependencies in model inputs 

Temporal dependencies capture patterns appearing in the target variable over time: 

seasonality, or systematic periodic fluctuations—in other words, a rise in sales during 

holidays—trends or long-term tendencies of increase and decrease in demand and, finally, the 

lagged effect of past events, such as past sales, still affecting current ones. Moreover, 

nonlinear dependencies can capture complex interactions between features that a linear 

method might not. For example, demand might increase exponentially once discount 

thresholds are reached, or sales might vary with weather conditions in nonlinear patterns—

such as rain significantly boosting umbrella sales. Besides, cross-feature interactions, such as 

promotions during holidays, may have joint effects on demand that are not evident in the 

analysis of the individual features. Data is prepared in sequences of time steps with all 

features at each step to enable an LSTM model to learn from both temporal and non-linear 

dependencies. These sequences are structured as in equation 3. 

𝑋 = {𝑋𝑡−𝑛, 𝑋𝑡−(𝑛−1), … , 𝑋𝑡}        (3) 

where n is the number of past-time steps included. Temporal metrics—such as lagged 

sales and moving averages—and non-linear factors in interactions between weather 

conditions and promotions- are added. Normalized so that features in different ranges don't 

dominate the learning process. Feature normalization is done for price and sale. Equation 4 

displays it. 

𝑥′ =
𝑥−𝜇

𝜎
           (4) 

where 𝜇 is average and 𝜎 refers to the dispersion of values. This preparation enables the 

LSTM model to capture sequential patterns and complex feature interactions. 

g) Model Development  

LSTM networks are an example of an RNN, designed to replicate the sequential patterns 

found in time-series data long-term dependency. The main problem with traditional RNNs 

was the vanishing or exploding gradients, which do not allow for modelling long-range 

dependencies in sequences. Using the gated mechanism, LSTM networks solve such 

problems by regulating the flow of information; it especially outperforms the tasks of time-

series forecasting.  

h) LSTM Networks for Sequential Data 

There are three gates in an LSTM cell that control the cell's hidden and present states: the 

Forget Gate, the Input Gate, and the Output Gate. The two states of LSTM cells are the cell 

state (𝐶𝑡) and the secret condition (ℎ𝑡). The network's memory is the cell state; it retains 

information over extended periods. The model's output results from several parts, one of 

which is the hidden state, which stores important information from one time step and passes it 

on to the next. Because of these, the LSTM can model interdependencies in sequential data in 
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the short and long term. The LSTM model's gate mechanism is displayed in Table 1. The 

LSTM model's gate performance is seen in equations 5–10. 

Table 1. Gate Mechanism of LSTM Model 

Component Equation Description 

Forget Gate (𝑓𝑡) 𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (5) 
Determines what portion of the 

cell state to retain or discard. 

Input Gate (𝑖𝑡) 
𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖)    

(6) 
Controls which new information 

to add to the cell state. 

Cell Update (𝐶�̃�) 
𝐶�̃� = 𝑡𝑎𝑛ℎ (𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 +

𝑏𝑐) (7)  

Proposes new candidate values 

for the cell state. 

Cell State Update (𝐶𝑡) 
𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶�̃�         

(8) 
It updates the cell state by 

combining the forget and input gates. 

Output Gate (𝑜𝑡) 
𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)   

(9) 
Ascertains the current cell's 

output. 

Hidden State Update 

(ℎ𝑡) 
ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ (𝐶𝑡)                   

(10) 

The output gate and the 

converted cell state update the 

concealed state. 

A combination of learnable parameters controls each gate (𝑊, 𝑈, 𝑎𝑛𝑑 𝑏) and activation 

functions (𝜎, typically the sigmoid curve, and 𝑡𝑎𝑛ℎ, the hyperbolic tangent). ⊙ represents 

element-wise multiplication. 

In time-series forecasting using an LSTM network, the model processes sequences of past 

observations, such as (𝑥𝑡−𝑛, 𝑥𝑡−𝑛+!, … , 𝑥𝑡), to predict future values, like 𝑦𝑡+1. The input is 

structured as a three-dimensional tensor 𝑋 ∈ 𝑅𝑁×𝑇×𝐹, where 𝑁 represents the number of 

sequences (batch size), 𝑇 denotes the sequence length (time steps), and 𝐹 counts the 

characteristics. The output layer generates forecasts for the target variable from one densely 

packed layer to another, with the output given by 𝑦𝑡 = 𝑊𝑜𝑢𝑡ℎ𝑡 + 𝑏𝑜𝑢𝑡, where ℎ𝑡 refers to the 

undisclosed condition occurring simultaneously 𝑡, and 𝑊𝑜𝑢𝑡 𝑎𝑛𝑑 𝑏𝑜𝑢𝑡 are learnable 

parameters. 

i) Hyperparameter optimization 

Grid search is among the most popular methods for finding the optimal configuration 

using a preset set of hyperparameters. Tuning several key hyperparameters is important for 

LSTM networks to deliver their best. The architecture comprises a hyperparameter setting the 

step size when updating the training weights and a learning rate. The capacity of an LSTM 

layer to identify complicated patterns is the quantity of LSTM units, specifying the number of 

layer-level neurons. Batch size refers to the number of training samples included in a model's 

training iteration; it is determined by the number of epochs, which describes how often a 

model sees or processes all available data during training. Proper values for combining these 

hyperparameters must be identified, as high forecasting accuracy depends greatly on them. 
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j) Grid Search for Hyperparameter Tuning 

Grid search is brute-force optimization, where one defines a set of hyperparameters and 

trains the model on each possible combination of those hyperparameters. It seeks the best 

possible combination of hyperparameters to get the best possible tuning of the evaluation 

measure (like MAE or RMSE).  

A grid of hyperparameters is defined by specifying possible values for each parameter: 

Learning Rate [0.001,0.01,0.1], Number of LSTM Units [50,100,200], Batch Size [16,32,64], 

and Epochs [10,50,100]. The grid is created based on domain knowledge or trial and error 

and then refined through testing. Thus, for every combination, an LSTM model will 

preprocess the data (like normalization or lagging), train it with the given hyperparameters 

and validate it on unseen data to measure generalization.  

4. Result and discussion 
a) Performance metrics 

The ESCLSTM method is compared with the traditional approaches—Artificial Neural 

Networks with Capuchin Search Algorithm (ANNCSA) [10], Deep Logistic Learning 

Framework (DLLF) [13], and Time-Series Analysis with Deep Learning Techniques 

(TSADL) [16]. The comparison of them is further elaborated by the evaluation of 

performance on three metrics: mean absolute error, root mean square error and Mean absolute 

percentage error. All metrics give comprehensive insight into how good the prediction 

accuracy, error magnitude, and scalability across various e-commerce supply chain 

forecasting scenarios are. 

b) Mean Absolute Error (MAE)  

The MAE is the sum of all the directional mistakes in a dataset's predicted and actual 

values. The equation 11 determines it.  

𝑀𝐴𝐸 =
1

𝑛
∑ ∣ 𝑦𝑖 − �̂�𝑖 ∣𝑛

𝑖=1                   (11)           

where 𝑦𝑖 finds the exact value, �̂�𝑖 stands as the predicted value, and 𝑛 is the sum of all 

findings.  

 

Figure 3. The MAE analysis 
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Figure 3 shows the MAE tendency of 20-time steps by using four methods: ESCLSTM, 

ANNCSA, DLLF, and TSADL. The error values for ESCLSTM are always the lowest, 

showing higher predictive accuracy. ANNCSA, DLLF, and TSADL have higher error levels, 

and TSADL has more variable error values. Comparisons show that ESCLSTM effectively 

reduced general absolute errors of non-linear and temporal patterns. This visualization points 

out the robustness and scalability of ESCLSTM in dynamic e-commerce supply chain 

environments for demand forecasting improvement. 

c) Root Mean Square Error (RMSE) 

A well-liked statistic for determining the difference between the anticipated (�̂�𝑖) and 

actual values (𝑦𝑖) of data sets, where 𝑛 represents the sum of all observations. It quantifies the 

model's prediction error and is calculated using Equation 12. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (�̂�𝑖 − 𝑦𝑖)2𝑛

𝑖=1                  (12)         

   

 

Figure 4. RMSE analysis 

Figure 4 compares the RMSE performance of the four methods, ANNCSA, DLLF, 

TSADL, and ESCLSTM, over five time points. Compared with other methods, ESCLSTM 

has the lowest RMSE as time passes, meaning higher prediction accuracy and robustness. 

Although the RMSE tendency of ANNCSA and DLLF keeps fluctuating, the overall trend of 

improvement is seen in TSADL. The most reliable steep decline of RMSE is comparable 

with ESCLSTM, which further underlines its effectiveness in forecasting time-series data. 

The most effective model among compared approaches is thereby flagged as ESCLSTM. 

d) Mean Absolute Percentage Error (MAPE) 

MAPE is one of the most used measures in assessing the performance of a forecasting 

model. It can be defined as the standard deviation in absolute terms in the expected. (�̂�𝑖) and 

real values (𝑦𝑖) overall observations. It is calculated as in equation 13. 



Enhancing E-commerce Supply Chains with Time-Series Forecasting Using Long Short-Term Memory (LSTM) 
Networks  

Muhtade Mustafa Aqil and Faiqah fauzi      

 

45 

ISSN: 3006-8894 
https://doi.org/10.70023/sahd/250204  

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑖−�̂�𝑖

𝑦𝑖
|𝑛

𝑖=1 × 100                (13) 

 

 

Figure 5. MAPE Analysis 

Figure 5 shows the comparative analysis of the average MAPE values for the four 

forecasting techniques: ANNCSA, DLLF, TSADL, and ESCLSTM. The smaller the MAPE 

value, the higher the prediction accuracy. Compared with other methods, the lowest MAPE 

value comes from ESCLSTM, which has the best prediction performance. TSADL has a 

rather close result but is still lower than ESCLSTM. On the other hand, ANNCSA and DLLF 

take higher values of MAPE; hence, these have lower accuracy. This paper shows that 

ESCLSTM is the most accurate and robust method compared to this prediction task. 

5. Conclusion  
This paper proves the effectiveness of the proposed ESCLSTM method in demand 

forecasting for e-commerce supply chains. Using an LSTM network, the model can capture 

non-linear patterns and temporal dependencies in historical sales and inventory data. Various 

preprocessing steps improve data quality by completing missing value sets, normalizing, and 

performing time-series decomposition to ensure the robust performance of the model. Results 

show an improvement in MAE and RMSE of 20% and 25%, respectively, over the 

conventional forecasting methods. The relatively high training computational cost has made 

applying LSTM networks in real-time applications difficult under a resource-constrained 

environment. Further enhancements could be made, for example, by incorporating extraneous 

variables, like job openings or salary levels, into the model; this will further make the model 

more comprehensive to the demand in a dynamic e-commerce environment. 
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