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A B S T R A C T  

                       Sophisticated prediction models are needed in intelligent settings to improve system efficiency, 

security, and customer satisfaction. This study on transformer-based time-lapse forecasting 

models for intelligent prediction covers numerous occurrences, including energy management, 

enhanced assistance for driver infrastructure, and in-car technologies. The recommended method 

identifies permanent correlations and complex temporal patterns in multi-feature collections 

employing self-focus. The Transformer's topology is developed to forecast time series. The 

information set is ready for abnormality recognition, event estimation, and trend assessment by 

cleaning and classifying the event types with different activity rates. The simulation of the 

Transformer receives the actual data set. Important findings reveal that the Transformer-based 

approach forecasts consecutive network configurations more accurately and consumes less 

computational resources than conventional techniques. The model's capabilities for identifying 

outliers and adjusting event distributions promote adaptive ambient decision-making price; 

subsequently, the Transformers technique lays the groundwork towards AI prediction, 

particularly improving sophisticated systems' capacity to interpret the meaning of complex 

influenced by events stream of information. 

 

Keywords: Predictive Intelligence, Transformer Model, Time-Series Forecasting, Smart 

Environments, Anomaly Detection. 

1. Introduction 
In conveyance, homes, and industrial automation, "intelligent circumstances" exist. Such 

scenarios necessitate efficient, secure, and usable connected systems. ADAS, intelligent energy 

consumption, and in-car technology provide significant real-time data [1]. Conventional statistical 

techniques cannot comprehend this information because of its interconnections and complex cycles of 

time. Sophisticated ecosystems require predictive intelligence to recognize issues, generate preventive 

selections, and improve processes.[2] Notwithstanding technological advances, statistical approaches 

and fundamental neural network procedures cannot handle the huge amount of smart environmental 

data, its complexity, and periodic relationships. Scalability is extremely complex datasets, and long-

term connections challenge these methods [3,4]. Complicated algorithms that manage sequential data, 

discover patterns, and make realistic predictions at all times require development as organizations 

become more linked. The research project focuses on how regular forecasting algorithms can't grasp 

the complicated and constantly shifting event dynamics of smart surroundings. The events include air 

conditioner heat needs, energy management fuel stages, ADAS system performance, and window and 

door sensing conditions. Occurrence incidence and intricacy differ across grouping, rendering pattern 

retrieval challenging [5].  
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Conventional models are highly computational and infrequently adapted throughout time. To 

solve that, researchers provide a Transformer-based Time-Series Prediction Framework for adaptive 

environment dynamical analysis of patterns. Originally designed for conversational processing, 

transformers can incorporate complicated sequential information links and long-term relationships. 

Following collection preprocessing for uniformity and precision, feature development removes spatial 

characteristics. After analyzing data, the Transformer finds outlier predictions and analyzes trends.  

a) Contributions of the Study: 

• AI that is more advanced and accurate Assessing complicated time-related data in smart 

settings is a perfect fit for a transformer-based strategy, which greatly enhances 

computational effectiveness and accuracy in prediction[6].  

• Reactive Recognition of Patterns may successfully spot irregularities, forecast future 

trends, and identify long-term relationships in various event types. 

• Flexible with the capacity to grow, The design can easily handle deployments in real life 

and adjust to changing trends in information, guaranteeing that the platform's throughput 

is continuously improved[7]. 

The rest of the article is organized like this: The second section provides a literature review and 

discusses current approaches to predictive intelligence in smart settings. In Section 3, the dataset, as 

well as the methods used for preprocessing and feature engineering, are detailed. The model based on 

Transformers is described in Section 4, along with its design and implementation details. Section 5 

showcases the outcomes of the experiments, evaluation measures, and performance comparisons. The 

results, consequences, and possible practical uses are covered in Section 6. Section 7 provides a 

comprehensive study summary and suggests avenues for further investigation. 

2. Literature Survey  
Ramesh et al.[8] The implied investigation detects distributing transformer anomalies using the 

Separation Forests Method. Internet of Things (IoT) sensor modules on transformer distributors 

measured a single phase current at the load, soil humidity, and oil content. The technology detects 

possible defects with an accuracy rate of 92% and gives a 24-hour time frame for prediction fault 

investigation. The equipment's requirement for constant internet access and restricted surroundings 

hinder its operation in hard or distant areas. Smart electrical systems benefit from efficient upkeep and 

defect detection using this IoT method. 

Xu et al.[9]The present research utilizes a collection containing electrical grid impulses that 

capture errors, deviations, and multi-label grid incidents, and it uses Thermal Fusion Transformers 

(TFT) and Variational Autoencoders (VAEs) to analyze patterns in multidimensional time-series 

information. Although the VAE offers excellent representations of hidden spaces, its findings show 

that TFT delivers better flexibility, lower runtimes, and greater precision in finding temporal trends. 

Appropriate variable tweaking is required for complicated data sets, and VAE latent outputs are less 

interpretable. This paradigm enhances problem detection and decision-making across urban and 

environmental systems by displaying historical trends with reduced dimensions, facilitating artificial 

intelligence explanation. 

 

Sun et al.[10] Global freshwater shortages and sustainable water resource development need 

wastewater reuse. Optimizing wastewater utilization requires precise input volume estimates in water 

treatment plants. Traditional and decomposition integration methods for non-stationary temporal data 

are peak and anomaly-sensitive: real-time rolling predictions and differential decomposition aid. After 
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ML prediction, the model uses differential decomposition with Complete Ensemble Empirical Mode 

Decomposition with Adaptive Noise—Outlier-sensitive Time-Aware Transformers for prediction 

integration. Fundamental ML, decomposition integration, and Transformer-based models increased 

ML-CEEMDAN-TSTF accuracy. The hybrid technique offers time-scale differential information, 

complicating environmental data prediction and adaptation. TS-Transformer made the model more 

sensitive to time series anomalies and peaks to manage anomalous data, water volume uncertainty, 

and low forecasting accuracy. Time-scale differential information enhanced model accuracy, Ts-

Transformer-based decomposition integration model beat LSTM, and ML-CEEMDAN-TSTF beat 

Transformer. This accurate and reliable reclaimed water measurement helps clean water and water 

environment management research. 

Laayati et al.[11] The insurmountable flow of electricity from the enormous integration of 

distributed energies, energy storage facilities, and electric vehicle charging stations has rendered grid 

energy management challenging. Achievements, power outages, and electrical transformer 

detonations in electrical substations can result. Electrical substations can use sophisticated sensors and 

innovative management and tracking techniques with Energy 4.0 in Smart Grids. Diagnose 

computations, Wellness Ranking, and life-loss estimation are used to create a composite artificial 

neural multilayer for transformers that provide power. A multi-dataset methodology study on 

comparisons chooses the best models. Evolutionary science supported vector machine, randomly 

generated forest, the k closest fellow man, and parametric regression-based predicts associated with 

an electronic energy transformer monitoring device establish notification important performance 

metrics and decide on control of loads, energy factor, and signal picks in this mixed-architecture 

system for predictions (PHM) health control. 

Muthulingam et al.[12]Because of precision reduction, complexity of time, and greater rate of 

errors, algorithms for deep learning may struggle to safeguard home automation data. In a novel 

method, the Protecting Intelligence Household through a Transformers-Based IoT Intrusion Detection 

System, or IDS, employing an Optimal Cross-Contextual Endpoint Runner Metropolis Play 

Transformers Networks tackles these concerns Sophisticated DL approaches boost smarter household 

safety and reliability in this unique System. The research project employs the Grid-Constrained 

Information Cleansing Procedure (GCDP)-preprocessed IoT_bot collection for excellent quality input. 

The Giant Trevally Optimizer Algorithm (GTOA) finds some of the most significant attributes to 

enhance categorization from cleansed data. Segmentation employs sophisticated residence safety 

framework O2CPRCG-TransNet. Somewhat Homomorphic Fuzzy-based Elliptic Curve Cryptography 

secures data transport. The proposed solution beats previous methods with 98% accuracy and 0.993 

recall in Python experiments. The outcomes prove the approach's effectiveness and potential for 

adaptive protection of your home. 

Wang et al.[13] IoT-connected cities with sensors need load control for the conservation of 

energy. The paper proposes AI-enhanced Multiple Learning-to-Learning (MSLL) phases for network 

safety and load monitoring. The recommended method uses MMStransformer, a model based on 

transformers for multifaceted, correlated information and prediction of load-distant interactions. The 

MMStransformer multi-mask learning-to-learning method maximizes computer performance while 

losing precision in prediction. Atmospheric and operational variables are analyzed since urban 

surveillance statistics are fluid and complex. Internet of Things (IoT) privacy and safety are addressed 

for confidential information handling and exchange. Compared with conventional estimates and 

established methods, laboratory findings suggest the novel technique works. Studies have found that 

applications based on AI increase load forecasting and infrastructure for smart city reliability. 
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Artificial intelligence solutions for sustainable urban planning and energy management are developed 

here. 

Sana et al.[14] attempts to identify anomalies in connected devices; the study uses models that 

have been tuned using Bayesian methodologies, such as Vision Transformers (ViT), Long Short-Term 

Memory (LSTM), Random Forest, and Ensembles Obtained Forest. Containing ViT, we were able to 

achieve 100% success rates and near-perfect metrics for training (accuracy >99.90%, AUC = 1.00) on 

the dataset, which contains multidimensional IoT attack information with complicated structures; 

however, our verification performance for the models trained using deep learning is still lower at 

78.70%. Some drawbacks include the possibility of excessive fitting during development and 

difficulties in deploying the model in actual-life situations caused by irregular data. Research 

presented here demonstrates effective ways to use state-of-the-art ML and DL techniques to improve 

the detection of attacks throughout the IoT. 

3. Proposed Methodology 
a) Transformer-Based Prediction Framework 

In intelligent settings, the network's design describes a chain of processes that handles information 

and makes predictions. Things like heating and cooling systems, power management software, and 

driving assistance technologies are examples of IoT devices that gather multimodal data in time 

series. The preconditioning procedure data helps with noise removal, missing information handling, 

and trustworthiness guarantees. A Transformer-based framework receives the cleaned-up material. 

Anomalies and anticipates trends instantaneously, encoder-decoder sections examine relationships 

between data elements, and multi-head self-awareness collects chronological connections. The 

dashboards show information, anomalies, and trends that may be used for proactive intelligence 

gathering in a graphical overlay. Finally, the System has a module for predicting the future, which 

provides reliable predictions to help intelligent surroundings make choices. 

 

Figure. 1. Enhanced Predictive Intelligence in Smart Environments Using Multivariate Time 

Series Transformer 

b) Multivariate Data Preparation  

The multitude of Internet of Things (IoT) instruments used in bright settings collect information 

about various types of events, including those related to HVAC (such as heat requests), managing 
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energy (such as fuel level positions), and advanced driver assistance systems (such as APA function 

status). A time-lapse structure is used for gathering information, which helps maintain the 

chronological linkages important for analyzing patterns. Quantitative data (such as thermometers and 

pressures), qualitative data (such as whether the door is open or closed), and boolean indications (such 

as whether the entire System is on or off) are all part of the multidimensional streams of information 

captured by connected device sensors. Preconditioning methods are used to handle unavailable values, 

reduce noise using flattening techniques, and remove redundancies produced by multiple 

communications or logging mistakes from raw data collected from sensors. Ensures that the data is 

precise as well as complete. Certain actions are taken to increase data dependability when gathering 

information. 

 

Figure. 2. Illustration of Multivariate Data Preparation 

Data collection is enhanced for investigation using Transformers through the creation of features. 

Mathematical attributes are often normalized using characteristic approaches like min-max 

standardization, whereas parameters containing subcategories are encrypted using techniques like 

one-hot encoding. Recurring patterns, it is possible to exclude time-of-day and day-of-the-week 

signals and other historical variables. After much sorting, all the information is ready for 

computational modelling. Initial visualizations like heatmaps, tools for transforming information like 

Pandas, mathematical computing tools like NumPy, and feature change tools like Scikit-learn are 

utilized to guarantee proper preparation.  

c) Transformer Model Training Data                              

Prospective reasoning for intelligent settings is built upon the Transformers Modeling Training 

Component. This section aims to create a Transformer design that can capture complex time-

dependent relationships and connections. The information set includes different occasion 

classifications, such as "Heat Request" for air conditioning activities and "Gear Shift Position" for 

equipment and acceleration measurements. As an illustration, the design may prioritize different kinds 

of events, such as "Driver Buckle Status" under the Seat Adjustments classification or "APA Func 

Status" under ADAS, thanks to the Transformer's self-awareness procedure, which helps to provide a 

more complete picture of how different variables communicate with one another. 

Algorithm: Multivariate Time-Series Transformer 

Input: Multivariate time-series data with historical labels and predefined hyperparameters  
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Output: A trained Transformer model for trend prediction and anomaly detection. 

Step 1: Data Preparation 

             Initialize data by normalizing numerical features 

             one-hot encoding, filling in missing values 

Step 2: Add Temporal Context 

Create and Add positional encodings  

Step 3: Build the Transformer Model 

Map input features to high-dimensional vectors 

    Apply dense layers for non-linear transformations 

    Incorporate dropout to reduce overfitting 

    Repeat attention  

Step 4: Train the Model 

Use Mean Squared Error (MSE) for predictions  

Binary Cross-Entropy (BCE) for anomaly detection 

Track validation loss to apply early stopping 

Step 5: Generate Predictions 

Use the trained model to: 

Predict future trends (e.g., energy demand). 

Detect anomalies (e.g., deviations in tyre pressure). 

Step 6: Evaluate Performance 

Measure performance using metrics like Mean Absolute Error (MAE) or F1 Score. 

Refine the model based on evaluation results. 

The Multivariate Time-Series Transformer predicts multidimensional trends and detects 

anomalies. First, the information is normalized, a single-hot encoded, and values that are missing are 

addressed. A positional encoded information improve time-series data organization by adding 

chronological perspective. The mathematical framework maps characteristics with numerous layers, 

drops out overfitting, and captures feature interactions with methods of attention. It receives 

instruction with Mean Squared Error for tendencies and Binary Cross-Entropy for abnormalities, 

halting promptly with validating losses. Effectiveness is measured by Mean Absolute Error and F1 

Score for trend prediction and anomaly detection. 

Characteristics like "Heat Request," "Fuel Level Position," and "Front Left Tire Pressure" are part 

of the heterogeneous time-series information that this algorithm examines. The various groups that 

this information comes from are "Air Conditioner," "Energy Management," and "Tire Monitoring." 

Processing starts with encrypting and standardizing these attributes, dealing with absent data, and 

splitting the information into analytical frames of defined sizes. Incorporating a period context is 
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achieved by adding spatial encoded information. To aid in predicting incidents (e.g., "Remote Close 

Trunk Request") and anomaly detection (e.g., anomalous "Gear Shift Position"), a Transformer 

framework with paying attention layers finds correlations among inputs and time increments. 

Parameters such as MAE or F1 Score evaluate how well the model performs. 

d) Intelligent Time-Series Analysis 

To investigate and forecast evolving trends in multidimensional time-lapse information sets, the 

Forecasting and Assessment Component employs learning methodologies such as Transformers. It 

uses features to analyze patterns, find anomalies, and immediately forecast to improve forecasting 

abilities in intelligent settings. Now, let's get into the technical details: 

1. Real-Time Forecasting 

This functionality predicts future trends by learning temporal dependencies and relationships 

among categories (e.g., "Air Conditioner" and "Energy Management"). 

Given a time-series dataset 𝑋 = [𝑥1, 𝑥2, … … . , 𝑥𝑡], where 𝑥𝑡  Is the feature vector at time 𝑡, the 

Transformer model predicts the next time step value 𝑥𝑡 + 1: 

𝑥𝑡 + 1 = 𝑓𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟(𝑥1, 𝑥2, … … . , 𝑥𝑡)     (1) 

Take into consideration that the "Fuel Level Position" data from the past may be used to 

forecast𝑥𝑡 + 1. 

2. Anomaly Detection 

Identifies deviations in event sequences from learned patterns by comparing actual and predicted 

values. Each event feature 𝑥𝑡  can compute the prediction error 

 𝑒𝑡 = |𝑥𝑡 − 𝑥𝑡|        (2) 

Flag an anomaly if 𝑒𝑡 > 𝜏.Example"Front Left Tire Pressure" (Tire Monitoring category)Actual 

pressure: 𝑥𝑡 = 30 𝑃𝑆𝐼 PSI.Predicted pressure: 𝑥𝑡 = 28 𝑃𝑆𝐼 .Error 𝑒𝑡 = |30 − 28| = 2𝑃𝑆𝐼 If 𝜏 = 1.5, 

the System flags this as an anomaly. 

3. Trend Analysis 

This function evaluates event frequencies and correlations between different categories. It helps 

identify patterns like recurring events or dependencies between features.  

Event Frequency Analysis: The frequency of each category is calculated as: 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑐) =
𝑁𝑐

𝑁𝑇
∗ 100       (3) 

For example, the Total number of events:51 + 47 + ⋯ + 9 = 357.Frequency of "Air 

Conditioner": Frequency(Air Conditioner)=
51

357
∗ 100 = 14.29%  

Event Correlation Analysis: The correlation between two categories (e.g., "Fuel Level Position" 

and "Gear Shift Position") is calculated using Pearson's correlation coefficient: 

𝑟 =
∑(𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)

√∑(𝑥𝑖−𝑥̅)2 ∑(𝑦𝑖−𝑦̅)2
       (4) 
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Where 𝑥𝑖and 𝑦𝑖Are values from the two categories, and 𝑥̅and 𝑦̅ .Correlation between "Ambient 

Light Status" and "Reverse Light Status":𝑟 = 0.8, indicating a strong positive correlation.     

Table. 1. The frequency of each category based on events 

Category # of 

Events 

Example Frequency (%) 

Air Conditioner 51 Heat Request 14.29 

Entertainment 47 Media Volume Configuration 13.16 

Energy 

Management 

43 Fuel Level Position 12.05 

Door & Window 37 Front Left Door Status 10.36 

ADAS 30  APA Func Status 8.40 

Remote Request 29 Remote Close Trunk Request 8.12 

Seat Adjustment 19 Driver Buckle Status 5.32 

Locking System 18 Tank Lock Request 5.04 

Steering Wheel 16 Steer Wheel Heat Request 4.48 

e) Decision-Support and Visualization  

The Transformer-based model's predictions and analyses are turned into interactive and actionable 

visual outputs by the Visualization and Decision Support Module, customized to the dataset's 

categories and values. As an example: 

1. Data Visualization: 

Show the number of instances of every class in a bar graph. An aggregate of 357 occurrences 

occurs, with 51 occurrences attributed to "Air Conditioner" (14.29%) and the fewest to "Window 

Wiper" (3 events, or 0.84%). Time-series plots show how an event has changed, such as how the "Fuel 

Level Position" metric in Energy Management has changed. Draws attention to times when energy 

use is high or low. 

 

Heatmaps: Connectivity heatmaps show how different categories relate to one another; for example, 

"Reverse Light Status" (Signal Lighting) and "Rear Mirror Fold Status" (Rear Mirror) are highly 

correlated. 

2. Relevant Findings: 

A "Front Left Tire Pressure" (Tire Monitoring) reading that suddenly falls below the predicted 

range or an unforeseen "Tank Lock Request" (Locking System) are two examples of anomalies that 

are detected based on model expectations. System optimization suggestions include energy use 

modifications, tyre maintenance warnings, and proactive safety checks for "Driver Buckle Status" 

(Seat Adjustment) abnormalities. 

 



Dynamic Pattern Analysis for Enhanced Predictive Intelligence in Smart Environments Using Transformer Learning 
Models 

Mohammad ameid alkato and Nekita kalenen     

 

93 

ISSN: 3006-8894 
https://doi.org/10.70023/sahd/250208  

3. Interactions with Stakeholders: 

Provides non-technical customers with dashboards that simplify patterns and trends. If we look at 

the distribution of events in the pie charts, we can see that "Air Conditioner" accounts for 14.29% of 

all occurrences, followed closely by "Entertainment" (13.17%) and "Energy Management" (12.04%). 

Alerting system operators to abnormalities in categories such as "Gear Shift Position" (Gear & 

Velocity) or "Ambient Light Status" (In-car Lighting) allows them to make decisions in real time. 

4. Result Analysis 
Several critical criteria are used to assess the efficacy of a Transformer-based model that 

examines multidimensional time-series information from classes like "Air Conditioner" (51 events, 

for example, Warm Requirement) and "Tire Monitoring" (9 events, for example, Front Left Tire 

Pressure). Accurately foreseeing "Fuel Level Position" trends in the Energy Management category is 

one example of how Mean Absolute Error (MAE) evaluates pattern projections. It does this by 

measuring the mean variance between fact and anticipated values. F1 Score is a precision-recall 

metric that assesses the ability to recognize anomalies; this is crucial for finding infrequent but serious 

abnormalities such as unanticipated changes to "Driver Buckle Status" or "Reverse Light Status." 

Lastly, R-Squared (𝑅2) evaluates the model's capacity to explain data variability, such as the 

correlations predicted between "Ambient Light Status" (In-car Lighting) and "Rear Mirror Fold 

Status" (Rear Mirror). Get ready to optimize your smart environment with these measures that reveal 

the model's prediction precision, detection of anomalies skills, and predictive ability. 

a) Mean Absolute Error (MAE) 

 

Figure. 3. Comparison Graph for Mean Absolute Error (MAE) 

Bar graph comparing four models' Mean Absolute Error (MAE) values across dataset event 

categories: TFT, TCN, RNN-Transformer, and the Proposed Multivariate Time-Series Transformer. 

Examples of typical characteristics of car systems include the "Air Conditioner" category (51 events) 

and the "Entertainment" category (47 events). For example, "Fuel Level Position" (Energy 

Management) and "Front Left Tire Pressure" (Tire Monitoring) are two examples of the kind of events 

that each model attempts to forecast. The chart shows how well each model does at this. With lower 

MAE values, the proposed model demonstrates superior prediction accuracy in capturing event 

patterns compared to others. 
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b) F1 Score 

 

Figure. 4. Comparison Graph for F1 Score 

Using event data from many categories, such as "Air Conditioner" and "Energy Management," 

allows graphs like this one to effectively demonstrate the interrelationships between the F1 scores of 

multiple models. Specifically, "Fuel Level Position" is within the purview of Energy Management, 

while "Front Left Door Status" is part of the Door & Window category. You'll find a combination of 

the above types in many car structures. By comparing the two algorithms' F1 scores, we can see 

which is better at predicting patterns and identifying exceptions for each data set. The previously 

Suggested Transformer approach showed better occurrence sequence forecasting abilities throughout 

the dataset, as indicated by higher F1 scores indicating higher accuracy. The reality that it achieved 

better results than rivals proved this to be true 

c) R-Squared (𝑅2) 

 

Figure. 5. Comparison Graph for Mean Absolute Error (MAE) 

Based on their R-squared (R²) scores, the graph compares the performance of four models: TFT, 

TCN, RNN-Transformer, and Proposed Transformer. A higher value suggests a more accurate 

prediction, as it shows how well each model matches the dataset. Events from multiple categories, 

with varying frequencies of occurrence, are included in the dataset. These categories include Air 

Conditioner, Energy Management, and Signal Lighting. With the greatest R² score, the Proposed 
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Transformer model outperforms the competition and can better capture temporal patterns across all 

these data types. This benefit is graphically shown in the graph with comments and error margins. 

5. Conclusion and Future Work 
According to this investigation, progress assessments, abnormal recognition, and incident 

predictions make employing Transformer-based devices in smart settings possible. The Transformer 

framework provided here makes more precise forecasts. It preserves more detailed geographic 

connections than previous techniques for occurrences with many factors, such as managing electricity 

and in-car devices. Machines can detect irregularities and predict prospective patterns, improving 

decision-making processes, protection, and user experiences. It performs adequately in the present 

moment due to its functioning well theoretically. Subsequent research may focus on optimizing the 

model's capacity for versatility to accommodate bigger databases with more frequency subcategories. 

The reference framework must be comprehensible since consumers must understand how choices are 

made, especially in highly critical areas such as energy planning and automotive security. Training 

reinforced may improve the statistical framework's immediate flexibility, resulting in greater precision 

forecasting and automatic system changes. Testing the algorithm in different situations and situations 

from other fields can help you comprehend its durability and versatility. 

References 

[1]. Almeida, A., Bermejo, U., Bilbao, A., Azkune, G., Aguilera, U., Emaldi, M., ... & Arganda-Carreras, I. 

(2022). A Comparative Analysis of Human Behavior Prediction Approaches in Intelligent 

Environments. Sensors, 22(3), 701. 

[2]. Panduman, Y. Y. F., Funabiki, N., Fajrianti, E. D., Fang, S., & Sukaridhoto, S. (2024). A Survey of AI 

Techniques in IoT Applications with Use Case Investigations in the Smart Environmental Monitoring 

and Analytics in Real-Time IoT Platform. Information, 15(3), 153. 

[3]. Hanif, M. F., & Mi, J. (2024). Harnessing AI for solar energy: Emergence of transformer models. 

Applied Energy, 369, 123541. 

[4]. Hameed, A., Violos, J., Leivadeas, A., Santi, N., Grünblatt, R., & Mitton, N. (2022). Toward QoS 

prediction based on temporal transformers for IoT applications. IEEE Transactions on Network and 

Service Management, 19(4), 4010-4027. 

[5]. Naveed, M. S., Hanif, M. F., Metwaly, M., Iqbal, I., Lodhi, E., Liu, X., & Mi, J. (2024). Leveraging 

advanced AI algorithms with transformer-infused recurrent neural networks to optimize solar irradiance 

forecasting. Frontiers in Energy Research, 12, 1485690. 

[6]. McMurray, S. (2024). Semantic Aware Environment Spatial-Temporal Graph Transformer: A Single-

Agent Multi-Class Trajectory Prediction Framework. 

[7]. Rajaram, Sampath. "A Model for Real-Time Heart Condition Prediction Based on Frequency Pattern 

Mining and Deep Neural Networks." PatternIQ Mining.2024, (01)1, 1-11. 

https://doi.org/10.70023/piqm241 

[8]. Ramesh, J., Shahriar, S., Al-Ali, A. R., Osman, A., & Shaaban, M. F. (2022). Machine Learning 

Approach for Smart Distribution Transformers Load Monitoring and Management System. Energies, 

15(21), 7981. 

[9]. Xu, H., Boyaci, A., Lian, J., & Wilson, A. (2024). Explainable AI for Multivariate Time Series Pattern 

Exploration: Latent Space Visual Analytics with Time Fusion Transformer and Variational 

Autoencoders in Power Grid Event Diagnosis. arXiv preprint arXiv:2412.16098. 

[10]. Sun, X., Zhang, L., Wang, C., Yang, Y., & Wang, H. (2024). Dynamic real-time prediction of 

reclaimed water volumes using the improved transformer model and decomposition integration 

technology. Sustainability, 16(15), 6598. 

[11]. Laayati, O., El Hadraoui, H., El Magharaoui, A., El-Bazi, N., Bouzi, M., Chebak, A., & 

Guerrero, J. M. (2022). An AI-Layered with Multi-Agent Systems Architecture for Prognostics Health 

https://doi.org/10.70023/sahd/250208


PatternIQ Mining 

https://piqm.saharadigitals.com/     
 

96 
Vol.No : 2 Issue No : 1 Feb 2025 

Management of Smart Transformers: A Novel Approach for Smart Grid-Ready Energy Management 

Systems. Energies, 15(19), 7217. 

[12]. Muthulingam, G. A., Dhasmana, G., Purushothaman, S., Honnaiah, S., Ronald, B., & 

Soudagar, M. E. M. (2024, October). Advanced IoT Intrusion Detection for Intelligent Homes using 

Optimized Cross-Contextual Transformers with a Dynamic City Game Framework. In 2024 8th 

International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC) (pp. 130-

136). IEEE. 

[13]. Wang, B., Dabbaghjamanesh, M., Kavousi-Fard, A., & Yue, Y. (2024). AI-enhanced multi-

stage learning-to-learning approach for secure smart cities load management in IoT networks. Ad Hoc 

Networks, 164, 103628. 

[14]. Sana, L., Nazir, M. M., Yang, J., Hussain, L., Chen, Y. L., Ku, C. S., ... & Por, L. Y. (2024). 

Securing the IoT Cyber Environment: Enhancing Intrusion Anomaly Detection with Vision 

Transformers. IEEE Access. 


