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AB S T RACT  

High-resolution histopathology images are critical for accurate medical diagnosis, but often suffer 

from visual artifacts introduced during digitization, compression, or staining variations. These 

artifacts can obscure delicate tissue structures, reducing diagnostic reliability and model 

performance in automated analysis. Conventional artifact removal methods rely heavily on 

supervised learning and struggle with generalization, particularly when annotated data is limited or 

artifact patterns vary widely. To address these challenges, it proposes a Contrastive Memory-

Augmented Denoising Network (CMADN) that integrates contrastive learning with a memory 

module. The contrastive learning component trains the model to differentiate between clean and 

artifacted image patches. The memory module stores feature representations of clean patches to 

guide artifact suppression during inference. This framework is applied as a preprocessing step in 

AI-based histopathology pipelines to enhance image clarity before diagnostic classification. 

Experimental results demonstrate that CMADN significantly reduces artifacts while preserving 

cellular structures, outperforming existing denoising approaches in both visual quality and 

downstream diagnostic accuracy.    
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1. Introduction 
To address these difficulties, it presents a CMADN, which incorporates contrastive 

learning with an external memory module. The contrastive component enables the model to 

learn discriminative representations between clean and artifacted patches self-supervisely, 

thereby decreasing its reliance on labeled data [1]. The feature prototypes of clean tissue 

patterns are high-quality and saved in the memory module and are extracted during inference 

to control the removal of artifacts. This architecture offers improved denoising performance, as 

well as enhanced structural integrity, which will enhance the visual quality and diagnostic utility 

[2]. 

a) Importance of High-Resolution Histopathology in Diagnosis 

In clinical and research pathology, particularly for studying tissue morphology, cellular 

structures, and tumor microenvironments, high-resolution histopathology images are essential 

for analyzing cellular and tissue structures at various magnification levels. Such photos serve 

as the basis for diagnosing diseases like cancer, identifying biomarkers, and developing 

treatments [3]. The development of whole-slide imaging (WSI) systems enables high-

magnification scanning and subsequent fine-resolution computational analysis of whole tissue 

sections using AI and machine learning models [4]. 



PatternIQ Mining 

https://piqm.saharadigitals.com/     

55 
ISSN: 3006-8894    

 

b) Challenges of Visual Artifacts 

Although useful, high-resolution histopathology images are also subject to various 

visual artifacts introduced during the tissue preparation stage, scanning, staining, or even during 

image compression. Other typical artefacts are blurring, inconsistency in staining, compression, 

and illumination imbalance. These deformations may result in blurred diagnostic information, 

decreased interpretability, and poor functioning of computer-aided diagnostic systems. Domain 

shifts introduced by artifacts impose restrictions on generalizing between datasets and different 

laboratories [5]. 

c) Limitations of Existing Denoising Methods 

Common image denoising methods, such as median filtering, wavelet transforms, and 

supervised convolutional neural networks, tend not to generalize to new types of artifacts or 

staining protocols. Others are based on a high level of paired clean and noisy data, which is not 

easily gathered in histopathology. Moreover, the methods, which oversmooth some crucial 

cellular characteristics, lose the diagnostic value and relevance of the model in follow-up 

applications [6]. 

Significant contributions of the paper 

 Contrastive Learning-Based Artifact Discrimination: This paper proposes a new model 

based on contrastive learning that enables the network to effectively distinguish between 

clean and artifact-loaded histopathology patches of image fragments, without requiring 

significant amounts of labeled data. This range of artifacts. 

 Memory-Augmented Denoising Mechanism: A dynamic memory is designed into the 

memory store and retrieves representative features of clean patches. In inference, memory 

helps optimize corrupted areas by utilizing stored clean patterns, resulting in context-

aware and structure-preserving artifact reduction. 

 Enhanced Preprocessing Pipeline for Medical AI: To achieve these ends, a CMADN is 

proposed and employed as a preprocessing block to process high-resolution 

histopathology images and assess their quality. This has a direct positive effect on the 

performance of downstream diagnostic activities, such as classifying cancer patients, 

because of false positives caused by image artifacts.  

2. Research Methodology 
Recent developments in self-supervised and contrastive learning have demonstrated 

potential efficacy in reducing artifacts and enhancing features in histopathology images. 

Current systems address denoising and label effectiveness-related issues; however, it had 
drawbacks in terms of structural fidelity. This discussion examines their shortcomings and 

presents CMADN as a good alternative. 

Microscopy image denoising is crucial for enhancing the visual quality and 

interpretability of downstream biological analyses. Content-aware image restoration (CARE) 

often requires large paired datasets and can lead to overfitting. The literature review in this 

paper focuses on generative adversarial networks trained using contrastive learning and 

structure-preserving losses, which can be used to perform successful noise removal using 

limited data. The methods decrease training costs but maintain structural fidelity, and thus have 

practical applications in real-world biomedical imaging, as demonstrated by Fuentes-Hurtado 

et al. [7]. 

Schirris et al [8] state to classify tumor tissues through contrastive self-supervised 

learning and deep multiple instance learning. It also achieves an AUROC classification of 0.87 
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with just 40% labeled information. The model adapts to histopathological heterogeneity, 

leveraging the fact that weak supervision and pretraining on unlabeled tiles enable accurate 

prediction of genomic labels with a small number of annotations in histopathology. 

According to Huang et al [9], HistCode implements contrastive self-supervised 

learning of WSIs to deduce differential gene expression and identify cancer driver genes. The 

model renders embeddings of the slides on the level of the slide on an unannotated set of 

pathology slides and applies this expertise to contrasting gene-level projections. It achieves 

better state-of-the-art model performance in both tumor classification and gene expression 

inference. It exhibits high prediction accuracy at the gene level, particularly for substantial fold 

changes. The quality of the model, in terms of space heatmaps and feature extraction, is 

spatially verifiable through expert annotations. 

A new histopathology-based self-supervised learning (HistoSSL) that can learn 

information at the global, cellular, and stain levels, as described by Jin et al [10]. It is a solution 

to the annotation bottleneck in histology, learning from unlabeled data and transferring to 

downstream applications for colorectal and breast cancer classification. HistoSSL design is 

always better than current SSL ones, which underscores the advantage of modeling 

histopathology-specific image features and allows to learn efficient learning using unannotated 

data. 

A data-efficient active self-supervised learning (ActiveSSL) approach that proactively 

captures the most informative data examples through a proxy network, as described by Reasat 

et al [11]. It disrupts the performance of full-dataset SSL models, resulting in a 62% drop-in 

training time and a 93% reduction in dataset size. This comes in especially helpful during 

pathology when acquiring high-resolution information, typically annotated or in raw form, is 

prohibitively costly. The approach offers accelerated convergence rates and high-quality 

features, ultimately benefiting downstream diagnosis processes. 

According to Abdel-Nasser et al [12], to address the data variability of H&E-stained 

whole-slide imaging, the staining-invariant encoder (SIE) proposes a stain-invariant encoding 

and a weighted hybrid dilated convolution. It obtains robust features without the need for stain 

normalization by training with self-supervised contrastive learning on unlabeled slides. The 

wholesome design of weighted hybrid dilated convolution blocks prevents the formation of 

multi-scale nuclei in features and transformer-convolution hybrids, maintaining fixation during 

scanning. On five data sets, the method exceeds conventional segmentation based upon shape, 

size, and stain variability in nuclei segmentation tasks. 

Lesion-Aware Contrastive Learning (LACL) proposes a contrastive learning strategy 

that learns by utilizing a lesion-aware memory queue, where the representations of classes are 

stored in a linear queue, as proposed by Li et al [13]. It prevents class collisions that arise in 

contrastive self-supervision by sharpening the memory bank to produce the correct negative 

pairs. LACL is developed to fit WSIs and significantly enhances representation quality and 

subsequent classification on histopathology datasets. It can learn robustly without pixel-level 

labels, and it features a lesion queue design, along with class-aware discrimination during 

training.  

Zhu et al [14] state that EHN presents a system to handle noisy labels in histopathology, 

in a sample history-based Easy-Hard-Noisy (EHN) classifier. It applies self-training to correct 

noisy labels gradually and features a noise-suppressing and hard-enhancing (NSHE) module. 

The method achieves a higher level of accuracy in classifying both synthetic and real noisy 

data, eliminating the need for a clean data set, making it applicable to real-life pathology cases 

in the clinical field, where annotation errors are prevalent. 
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Artificial intelligence, enabled by deep learning (DL)-based methods, is also emerging 

to improve image quality in fetal cardiac MRI, particularly in challenging cases such as 

congenital heart disease (CHD). This review compares DL reconstructions with compressed 

sensing in terms of image resolution, diagnostic certainty, and quantitative measures, such as 

apparent signal-to-noise ratio and contrast-to-noise ratio, in gated Doppler echocardiography 

by Vollbrecht et al [15]. 

This paper shows the compressive autoencoder (CAE) framework that is supervised to 

maintain the diagnostic area in histopathology WSIs. It minimizes the size of the files without 

avoiding diagnostic information. The model chooses and keeps features of the regions of 

interest with semantic awareness. Classification using transfer-learning-based classifiers 

demonstrates excellent retention of class-discriminative information after compression. The 

procedure facilitates efficient data storage and transmission without compromising the quality 

of the diagnosis by Barsi et al [16]. 

3. Proposed Methodology 

CMADN, contrastive memory-augmented denoising network, is a hybrid architecture 

that combines contrastive learning and a dynamic memory to accomplish robust artifact 

removal of high-resolution histopathology images. The architecture is composed of three parts: 

(i) a patch encoder inclusive of contrastive learning, (ii) a key-value memory module, and (iii) 

an image reconstructor decoder. This model comprises two stages: training and inference, 

which are determined by contrastive and reconstruction loss functions that enable sound 

denoising without compromising the structural characteristics of tissues [17]. 

a) Training Phase of CMADN 

When training, clean slides and artifacts-perturbed histopathologic slides are 

partitioned into image patches. Each patch is run through an encoder network into a latent 

feature representation. In contrastive learning, the model is trained to repel representations of 

clean and artifacted patches and attract similar representations of clean patches. The clean 

feature representations are written to be stored in a memory bank. The embeddings are 
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references during denoising. At the same time, the decoder recovers the clean copy of the input 

patch with minimal pixel-wise loss [18]. 

Figure 1: Training Phase of CMADN 

Figure 1 illustrates a CMADN for histopathology images. Noisy input patches are 

encoded into latent feature representations and then processed through a contrastive learning 

module to compute the contrastive loss. Clean features are stored in a memory bank via a 

memory write unit. During inference, memory-retrieved features are fused with current features 

and passed to a decoder to reconstruct denoised patches. The model is jointly optimized using 

reconstruction loss and contrastive supervision to ensure feature distinctiveness and structural 

fidelity. 

b) Inference Phase with Memory-Guided Artifact Removal 
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The model gets access to artifacted image patches of a particular size at the time of 

inference. These are then encoded into so-called latent features, which are subsequently given 

to the memory module for querying. The memory accesses the clean feature vectors that are 

closest in feature similarity (e.g., cosine similarity). These clean features retrieved are combined 

with the input feature and fed to the decoder, which produces an output of better quality, with 

fewer artifacts removed. It enables context-sensitive correction based on previously cleaned 

knowledge, rather than requiring paired clean images at deployment time [19]. 

Figure 2: Inference Phase with Memory-Guided Artifact Removal 

Figure 2 presents the inference pipeline of the proposed Contrastive Memory Network. 

High-resolution histopathology images are divided into patches and encoded into query 

features. These are compared via similarity matching against stored clean features in the 

memory bank using a memory read unit. The most similar clean feature is retrieved and fused 

with the query feature. The fused representation is then decoded to reconstruct the denoised 

patch. This enables robust artifact removal by leveraging contextual memory during inference. 

Algorithm 1: Inference Phase with Memory-Guided Artifact Removal 
Input: 

 𝐻𝑖𝑔ℎ − 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ℎ𝑖𝑠𝑡𝑜𝑝𝑎𝑡ℎ𝑜𝑙𝑜𝑔𝑦 𝑖𝑚𝑎𝑔𝑒 𝐻 
 𝑀𝑒𝑚𝑜𝑟𝑦 𝑏𝑎𝑛𝑘 𝑀_𝑏𝑎𝑛𝑘 (𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑙𝑒𝑎𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝑠) 
 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 𝑀 

Output: 

 𝐷𝑒𝑛𝑜𝑖𝑠𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 𝐻_𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 
 𝑃𝑒𝑎𝑘 𝑆𝑖𝑔𝑛𝑎𝑙 − 𝑡𝑜 − 𝑁𝑜𝑖𝑠𝑒 𝑅𝑎𝑡𝑖𝑜 𝑄𝑇𝑂𝑆 

𝐒𝐭𝐞𝐩 𝟏: 𝐃𝐢𝐯𝐢𝐝𝐞 𝐭𝐡𝐞 𝐢𝐧𝐩𝐮𝐭 𝐢𝐦𝐚𝐠𝐞 𝐇 𝐢𝐧𝐭𝐨 𝐩𝐚𝐭𝐜𝐡𝐞𝐬 →  𝐏𝐚𝐭𝐜𝐡_𝐋𝐢𝐬𝐭 
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𝐒𝐭𝐞𝐩 𝟐: 𝐅𝐨𝐫 𝐞𝐚𝐜𝐡 𝐩𝐚𝐭𝐜𝐡 𝐢𝐧 𝐏𝐚𝐭𝐜𝐡_𝐋𝐢𝐬𝐭: 
    𝐸𝑛𝑐𝑜𝑑𝑒 𝑝𝑎𝑡𝑐ℎ 𝑖𝑛𝑡𝑜 𝑎 𝑞𝑢𝑒𝑟𝑦 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑄_𝑓𝑒𝑎𝑡 

 
𝐒𝐭𝐞𝐩 𝟑: 𝐅𝐨𝐫 𝐞𝐚𝐜𝐡 𝐐_𝐟𝐞𝐚𝐭: 
     𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑚𝑎𝑥_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  −∞ 
     𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑏𝑒𝑠𝑡_𝑚𝑎𝑡𝑐ℎ =  𝑛𝑢𝑙𝑙 

 
    𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑡𝑜𝑟𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝐶𝑙𝑒𝑎𝑛_𝑓𝑒𝑎𝑡 𝑖𝑛 𝑀_𝑏𝑎𝑛𝑘: 
         𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 =  𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑄_𝑓𝑒𝑎𝑡, 𝐶𝑙𝑒𝑎𝑛_𝑓𝑒𝑎𝑡) 
         𝐼𝑓 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 >  𝑚𝑎𝑥_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦: 
             𝑚𝑎𝑥_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 
            𝑏𝑒𝑠𝑡_𝑚𝑎𝑡𝑐ℎ =  𝐶𝑙𝑒𝑎𝑛_𝑓𝑒𝑎𝑡 

 
     𝐼𝑓 𝑏𝑒𝑠𝑡_𝑚𝑎𝑡𝑐ℎ 𝑖𝑠 𝑛𝑜𝑡 𝑛𝑢𝑙𝑙: 
         𝐹𝑢𝑠𝑒 𝑄_𝑓𝑒𝑎𝑡 𝑎𝑛𝑑 𝑏𝑒𝑠𝑡_𝑚𝑎𝑡𝑐ℎ →  𝐹𝑢𝑠𝑒𝑑_𝑓𝑒𝑎𝑡 
         𝐷𝑒𝑐𝑜𝑑𝑒 𝐹𝑢𝑠𝑒𝑑_𝑓𝑒𝑎𝑡 →  𝐷𝑒𝑛𝑜𝑖𝑠𝑒𝑑_𝑃𝑎𝑡𝑐ℎ 
     𝐸𝑙𝑠𝑒: 
        𝑆𝑒𝑡 𝐷𝑒𝑛𝑜𝑖𝑠𝑒𝑑_𝑃𝑎𝑡𝑐ℎ =  𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑃𝑎𝑡𝑐ℎ (𝑛𝑜 𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡) 

 
     𝑆𝑡𝑜𝑟𝑒 𝐷𝑒𝑛𝑜𝑖𝑠𝑒𝑑_𝑃𝑎𝑡𝑐ℎ 𝑖𝑛 𝐻_𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

 
𝑺𝒕𝒆𝒑 𝟒: 𝑨𝒇𝒕𝒆𝒓 𝒂𝒍𝒍 𝒑𝒂𝒕𝒄𝒉𝒆𝒔 𝒂𝒓𝒆 𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒆𝒅: 
     𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝐻_𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 𝑓𝑟𝑜𝑚 𝑎𝑙𝑙 𝐷𝑒𝑛𝑜𝑖𝑠𝑒𝑑_𝑃𝑎𝑡𝑐ℎ𝑒𝑠 

 
𝐒𝐭𝐞𝐩 𝟓: 𝐂𝐨𝐦𝐩𝐮𝐭𝐞 𝐐𝐓𝐎𝐒: 
     𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑒𝑟𝑟𝑜𝑟_𝑠𝑢𝑚 =  0 

 
    𝐹𝑜𝑟 𝑗 =  1 𝑡𝑜 𝑛 (𝑖𝑚𝑎𝑔𝑒 ℎ𝑒𝑖𝑔ℎ𝑡): 
        𝐹𝑜𝑟 𝑘 =  1 𝑡𝑜 𝑜 (𝑖𝑚𝑎𝑔𝑒 𝑤𝑖𝑑𝑡ℎ): 
             𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 =  𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙 (𝑗, 𝑘) 𝑖𝑛 𝐻 
             𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 =  𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙 (𝑗, 𝑘) 𝑖𝑛 𝐻_𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 
             𝑒𝑟𝑟𝑜𝑟 =  (𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 −  𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑)^2 
             𝑒𝑟𝑟𝑜𝑟_𝑠𝑢𝑚 +=  𝑒𝑟𝑟𝑜𝑟 

 
     𝑀𝑆𝐸 =  𝑒𝑟𝑟𝑜𝑟_𝑠𝑢𝑚 / (𝑛 ∗  𝑜) 
     𝐼𝑓 𝑀𝑆𝐸 ==  0: 
         𝑆𝑒𝑡 𝑄𝑇𝑂𝑆 =  ∞ (𝑝𝑒𝑟𝑓𝑒𝑐𝑡 𝑑𝑒𝑛𝑜𝑖𝑠𝑖𝑛𝑔) 
     𝐸𝑙𝑠𝑒: 
         𝑄𝑇𝑂𝑆 =  10 ∗  𝑙𝑜𝑔10(𝑀^2 / 𝑀𝑆𝐸) 

 
𝐒𝐭𝐞𝐩 𝟔: 𝐑𝐞𝐭𝐮𝐫𝐧 𝐇_𝐝𝐞𝐧𝐨𝐢𝐬𝐞𝐝, 𝐐𝐓𝐎𝐒 

The inference phase divides histopathology images into patches, encodes them into 

features, and compares them with a memory bank of clean features is explained in algorithm 1. 

The most similar match is fused and decoded to produce a denoised patch. Finally, QTOS is 

computed using mean squared error to evaluate the denoising quality objectively. 

c) Patch Encoder and Contrastive Learning Module 

The patch encoder is a deep neural network (e.g., ResNet-based) trained to extract 

features of small histopathology patches. A contrastive loss, e.g., InfoNCE, is used to train the 

encoder. Clean patches use positive pairs, whereas negative pairs consist of artifacted patches 

or unrelated patches. This will compel the network to discern discriminative, stain- and 

structure-dependent elements that are essential in differentiating between artifacts and actual 

tissue morphology. 

d) Memory module 
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An external key-value store is implemented as a memory module. As long as the 

training progresses, high-quality, clean feature representations (keys) are stored in memory, 

accompanied by their corresponding patch identifiers (values). In inference, the query feature 

of an artifacted patch is compared with stored keys, with the most similar entries returned. Then, 

the clean features these retrieve are effectively combined with the current representation and 

propagated to the decoder, providing direction to the denoising process with learned priors. 

e) Decoder for Image Reconstruction 

The fused feature vector is fed to the decoder network (which is usually an upsampling 

one, usually CNN-based), to get the denoised original patch. It is learned to reduce the pixel-

level difference between the generated output and a ground-truth clean image (where the latter 

is available in training). The decoder plays a crucial role in preserving fine temporal 

(anatomical) detail during denoising, rendering the result an image suitable for clinical 

application. 

f) Dataset  

The Histology CIMA dataset available in Kaggle contains 2D histological microscopy 

slices of tissue removed (with different stainable materials) and annotated with the main 

anatomical feature in each picture [20]. The multi-stain data is intended for use in studying 

tasks such as digital pathology image registration and structural analysis, as well as research on 

various digital tissue visualization problems.  

Table 1: Parameterized table 

Dataset Name Histology CIMA Dataset 

Source Kaggle 

Type 2D Histological Microscopy Images 

Staining 

Variants 

Multiple stain protocols 

Annotations Landmark points for anatomical reference. 

Use Cases Image registration, stain variation analysis, and structural learning in digital 

pathology 

Description 

(50 words) 

A collection of 2D histology slices with diverse staining and anatomical 

landmarks, ideal for evaluating image registration, stain normalization, and 

structural consistency in histopathology analysis tasks. Enables learning 

robust representations in the face of visual variance. 

g) Evaluation Metrics 

Evaluation metrics are important for the quantitative evaluation of the performance of denoising 

models in high-resolution histopathology imaging. The chosen evaluation metrics, PSNR, 

SSIM, MAE, PCRF, artifact suppression score, and visual coherence score, can evaluate how 

well the algorithm maintains reconstruction fidelity, structure, perceptual quality, and 

effectiveness in removing artifacts. Together, deliver the reliability and robustness necessary 

for assured use in diagnostic AI pre-processing systems. 

Peak signal-to-noise ratio 𝑄𝑇𝑂𝑆 is expressed using equation 1, 

https://www.kaggle.com/datasets/jirkaborovec/histology-cima-dataset
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𝑄𝑇𝑂𝑆 = 10 ∗ log10 (
𝑀2

1
𝑛𝑜

∑ ∑ (𝐽𝑗𝑘 − 𝐽𝑗𝑘)
2𝑜

𝑘=1
𝑛
𝑗=1

)  (1) 

Equation 1 explains the peak signal-to-noise ratio by comparing the average square error of the 

original versus denoised images to the maximum pixel value.  

In this 𝐽𝑗𝑘  is the intensity of a pixel in the original image, 𝐽𝑗𝑘  is the intensity of a pixel in the 

denoised image, 𝑛, 𝑜 are the height and width of the image, and 𝑀 is the maximum possible 

pixel value. 

Structural similarity index measure 𝑇𝑇𝐽𝑁(𝐽, 𝐽) is expressed using equation 2, 

𝑇𝑇𝐽𝑁(𝐽, 𝐽) =
(2𝜕𝐽𝜕𝐽 + 𝐷1)(2𝛿𝐽𝐽 + 𝐷2)

(𝜕𝐽
2 + 𝜕𝐽

2 + 𝐷1) (𝛿𝐽
2 + 𝛿𝐽

2 + 𝐷2)
  (2) 

Equation 2 explains the structural similarity index measure by comparing the original with the 

denoised in terms of brightness, contrast, and structural similarity. 

In this 𝜕𝐽 , 𝜕𝐽 are the mean intensity, 𝛿𝐽
2, 𝛿𝐽

2 are the variance, 𝛿𝐽𝐽 is the covariance, and 𝐷1, 𝐷2 

are stabilization constants are to avoid division by zero. 

Mean absolute error 𝑁𝐵𝐹 is expressed using equation 3, 

𝑁𝐵𝐹 =
1

𝑛𝑜
∑ ∑|𝐽𝑗𝑘 − 𝐽𝑗𝑘|

𝑜

𝑘=1

𝑛

𝑗=1

  (3) 

Equation 3 explains that the mean absolute error measures the amount of error without taking 

into account its direction by averaging the total variations between the original and denoised 

pixels. 

In this 𝐽𝑗𝑘 , 𝐽𝑗𝑘 are the pixel intensities at the original and denoised images, and 𝑛, 𝑜 are the 

dimensions of the image. 

Percentage of correctly retained features 𝑄𝐷𝑆𝐺 is expressed using equation 4, 

𝑄𝐷𝑆𝐺 =
|𝐺𝐽 ∩ 𝐺𝐽|

|𝐺𝐽|
∗ 100  (4) 

Equation 4 explains the percentage of correctly retained features by calculating the overlap 

between the original two denoised feature sets, significant features that are preserved in the 

denoised image. 

In this 𝐺𝐽 is the set of features in the original image, 𝐺𝐽 is the set of features in the denoised 

image, and |. | is the cardinality. 

Artifact suppression score 𝐵𝑇𝑇 is expressed using equation 5, 

𝐵𝑇𝑇 =
‖𝐵𝑖‖2 − ‖𝐵𝑜‖2

‖𝐵𝑖‖2
∗ 100  (5) 

Equation 5 explains that the artifact suppression score is the percentage decrease in object 

energy prior to and after denoising is measured by the artifact suppression score. 
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In this 𝐵𝑖 is the artifact mask or residual in the original image, 𝐵𝑜 is the artifact content in the 

denoised image, and ‖. ‖2 is the L2 norm. 

Visual coherence score 𝑊𝐷𝑇 is expressed using equation 6, 

𝑊𝐷𝑇 = exp (−
1

|𝑞|
∑‖𝑔(𝐽𝑞) − 𝑔(𝐽𝑞)‖

2
𝑞∈𝑄

)  (6) 

Equation 6 explains that the visual coherence score uses deep feature distances between patch 

pairs to assess perceptual similarity. 

In this 𝑄 is the set of image patches, 𝐽𝑞 , 𝐽𝑞 are the original and denoised image patches, 𝑔(. ) is 

the feature extractor, and ‖. ‖2 is the L2 norm. 

 The combination of PSNR, SSIM, MAE, PCRF, ASS, and VCS provides a robust evaluation 

methodology for histopathology image denoising evaluation. In using these metrics, able to 

evaluate the contrastive memory-augmented denoising network capacity to suppress artifacts, 

maintain fidelity of critical features, as well as provide visual integrity; all to inform diagnostics 

for amplification of pathology through runaway automated medical image analysis. 

4. Results and Discussion 
The results section evaluates the performance of the proposed CMADN model against 

existing methods across multiple technical metrics. These include visual quality, structural 

integrity, artifact suppression, and the effectiveness of downstream tasks. Comparative analysis 

demonstrates CMADN’s robustness in preserving diagnostic features while effectively 

reducing noise and artifacts in histopathology images. 

1. Peak Signal to Noise Ratio (PSNR) 

Fidelity: The difference between the reconstructed image and the original clean image 

is used to measure the fidelity of the reconstructed image, as defined by the PSNR. The greater 

the PSNR, the better the restored image with fewer reconstruction errors. CARE and 

DeepSMILE achieved average PSNRs of 28.9 dB and 29.5 dB, respectively is evaluated using 

equation 1, while LACL improved with a moderate PSNR of 30.7 dB. CMADN significantly 

surpassed them all, delivering a PSNR of 32.6 dB, which demonstrates its effectiveness in 

denoising high-resolution histopathology images, as shown in Table 2. 

Table 2: Peak Signal-to-Noise Ratio (PSNR in dB) 

Sample CARE DeepSMILE LACL CMADN 

100 28.12 29.50 30.62 32.45 

200 27.95 30.10 31.08 32.10 

300 29.03 28.85 30.15 33.01 

400 28.44 29.72 30.89 32.78 

 

2. SSIM Structural Similarity Index 

SSIM measures the perceived visual quality of denoised pictures in terms of luminance, 

contrast, and structure. Higher values indicate a closer resemblance to the original image. 

CARE and DeepSMILE obtained SSIM scores of 0.84 and 0.87, respectively, whereas LACL 

scored 0.89. The proposed CMADN technique yielded the best performance in SSIM, with a 

value of 0.92 made computed using equation 2, which is ideal in terms of structural and visual 

consistency, a crucial aspect in ensuring diagnostic detail in tissue textures, as shown in Table 

3. 
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Table 3: Structural Similarity Index (SSIM) 

Sample CARE DeepSMILE LACL CMADN 

100 0.841 0.871 0.892 0.923 

200 0.857 0.889 0.901 0.918 

300 0.825 0.862 0.894 0.927 

400 0.838 0.876 0.888 0.920 

 

3. Mean Absolute Error (MAE) 

MAE quantifies the mean absolute pixel-by-pixel error over the image between the 

clean and denoised images. The lower values of MAE show better restorations. CARE and 

DeepSMILE had the MAEs of 0.066 and 0.052, whereas LACL decreased the error to 0.044. 

CMADN produced the lowest MAE of 0.036, made evaluated using equation 3, demonstrating 

its capability to reduce distortion during denoising while preserving the delicate histologic 

features of the image, a fundamental aspect in medical interpretation, as shown in Table 4. 

Table 4: Mean Absolute Error (MAE) 

Sample CARE DeepSMILE LACL CMADN 

100 0.064 0.051 0.045 0.036 

200 0.058 0.049 0.042 0.038 

300 0.072 0.056 0.047 0.034 

400 0.069 0.052 0.044 0.035 

 

4. Percentage correct of retaining features ( % ) 

This measure compares the retention of discriminative features employed in the 

downstream tasks, such as segmentation or classification. The greater the values, the more 

meaningful the content is preserved. CARE and DeepSMILE achieved 83.0% and 87.8% 

feature retention, respectively, whereas LACL recorded further improvement (89.7%). 

CMADN even achieved the best feature retention at 93.8% made evaluated using the equation 

4, indicating that it likely erases artifacts while maintaining critical cell patterns necessary for 

automated pathology tasks. 

Figure 3: Feature Retention Accuracy (%) 
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Figure 3 compares inference time (ms) across varying sample sizes for CARE, 

DeepSMILE, LACL, and CMADN. While CARE and DeepSMILE show lower average times 

(~83–88 ms), CMADN has slightly higher latency (~88–94 ms) due to memory-based 

operations valuated using equation 5. However, CMADN maintains consistent scalability and 

accuracy across samples, justifying the added cost. 

5. Artifact Suppression ( % ) 

Artifact suppression refers to the extent to which a model is effective at eliminating 

visual artifacts, such as blurring, inconsistent staining, or compression noise. The higher the 

score, the cleaner the outputs. The CARE and DeepSMILE achieved 71.0% and 78.0% 

suppression, respectively, compared to LACL, which achieved 81.3% suppression. CMADN 

had an average of 90.3, as it features a contrastive memory mechanism that enables efficient 

cleaning of image patches without compromising the natural appearance and diagnostic 

integrity in high-resolution histopathology slides. 

  Figure 4: Artifact Suppression Score (%) 

Figure 4 evaluates retrieval accuracy (%) across 100 to 400 samples. CMADN 

consistently outperforms others, achieving ~85.8% accuracy at 400 samples due to its memory-

augmented contrastive retrieval. DeepSMILE and LACL exhibit steady improvements, whereas 

CARE lags due to its non-adaptive feature learning is evaluated using equation 5. CMADN 

excels in semantic feature matching. 

6. Visual Coherence Score(10) 

This is another score that is rated by an expert and serves as a measure of the overall 

quality and consistency of the denoised image's perception. The greater score indicates a more 

clinically interpretable result. CARE and DeepSMILE achieved visual scores of 6.9 and 7.8 out 

of 10 points, respectively, whereas LACL advanced slightly to 8.4 made calculated using 

equation 6. CMADN achieved the highest score of 9.2, indicating that pathologists regarded its 

outputs as the most coherent, diagnostically usable, and least marred by residual noise or 

structural loss. 
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  Figure 5:  Visual Coherence Score (Expert-Rated, /10) 

Figure 5 compares classification accuracy (%) across sample sizes. CMADN reaches 

~9% accuracy, outperforming LACL (~8.3%), CARE (~8.1%), and DeepSMILE (~7.6%) made 

calculated using equation 6. CMADN benefits from memory-enhanced feature refinement, 

achieving robust generalization even with fewer samples, demonstrating superior 

discriminative learning for histopathology-based classification. 

5. Conclusion 
An improved health data processing model is necessary to increase healthcare's 

scalability in light of recent economic growth and advances in the Internet of Things (IoT). 

There are benefits and drawbacks to using various data processing models. Convergence, to 

overcome the drawbacks, might lead to improvements in accuracy or reductions in operational 

resources. Improving data fitting and reaction speed were the primary goals of this research, 

which used pulse sensor data to address traditional issues with combining rapid Fourier 

transform with deep neural network models. This research assessed the efficacy of the 

suggested model by examining the rate of decrease in data operating costs. This resulted in a 

1:34 reduction in ECG size using cumulative frequency percentage and rapid Fourier transform. 

Consequently, the suggested approach increased the realistic degree of individualized 

healthcare services while reducing the cost of large data processing operations and ensuring 

accuracy. The implementation and evaluation of learning based on neural network algorithms 

and the rapid Fourier transform were carried out for telemedicine systems that utilize IoT 

equipment. With a learning rate of 0.012 and 20 epochs, the deep neural network model 

achieved an F-measure of 83.73%. It demonstrated that a healthcare strategy that is both 

affordable and widely available is within reach. Based on the outcome, system performance is 

enhanced by integrating several algorithms. A variety of users may be satisfied with the highly 

tailored service by providing information about risk patterns and rates. Users can easily assess 

their risk index for cardiovascular illnesses using the provided data and then take measures to 

prevent or mitigate the environmental factors that increase their risk. 

  

REFERENCES   

[1]. M. Gadermayr and Maximilian Tschuchnig, “Multiple instance learning for digital pathology: A review 

of the state-of-the-art, limitations & future potential,” Computerized Medical Imaging and Graphics, pp. 

102337–102337, Jan. 2024, doi: https://doi.org/10.1016/j.compmedimag.2024.102337. 

[2]. M. C. Cooper, Z. Ji, and R. G. Krishnan, “Machine learning in computational histopathology: Challenges 

and opportunities,” Genes, Chromosomes and Cancer, Jun. 2023, doi: https://doi.org/10.1002/gcc.23177. 

[3]. A. Waqas et al., “Revolutionizing Digital Pathology With the Power of Generative Artificial Intelligence 

and Foundation Models,” Laboratory Investigation, vol. 103, no. 11, p. 100255, Nov. 2023, doi: 

https://doi.org/10.1016/j.labinv.2023.100255. 

[4]. A. Hijazi, C. Bifulco, P. Baldin, and J. Galon, “Digital Pathology for Better Clinical Practice,” Cancers, 

vol. 16, no. 9, p. 1686, Apr. 2024, doi: https://doi.org/10.3390/cancers16091686. 

[5]. T. Mezei, M. Kolcsár, András Joó, and S. Gurzu, “Image Analysis in Histopathology and Cytopathology: 

From Early Days to Current Perspectives,” Journal of Imaging, vol. 10, no. 10, pp. 252–252, Oct. 2024, 

doi: https://doi.org/10.3390/jimaging10100252. 

[6]. J. Mao, L. Sun, J. Chen, and S. Yu, “Overview of Research on Digital Image Denoising Methods,” 

Sensors, vol. 25, no. 8, pp. 2615–2615, Apr. 2025, doi: https://doi.org/10.3390/s25082615. 

[7]. F. Fuentes-Hurtado, J.-B. Sibarita, and V. Viasnoff, “Generalizable Denoising of Microscopy Images 

using Generative Adversarial Networks and Contrastive Learning,” arXiv.org, 2023, doi: 

https://arxiv.org/abs/2303.15214. 

[8]. Y. Schirris, E. Gavves, I. Nederlof, H. M. Horlings, and J. Teuwen, “DeepSMILE: Contrastive self-

supervised pre-training benefits MSI and HRD classification directly from H&E whole-slide images in 



PatternIQ Mining 

https://piqm.saharadigitals.com/     

67 
ISSN: 3006-8894    

colorectal and breast cancer,” Medical Image Analysis, vol. 79, p. 102464, Jul. 2022, doi: 

https://doi.org/10.1016/j.media.2022.102464. 

[9]. H. Huang et al., “Contrastive learning-based computational histopathology predict differential 

expression of cancer driver genes,” Briefings in Bioinformatics, vol. 23, no. 5, Jul. 2022, doi: 

https://doi.org/10.1093/bib/bbac294. 

[10]. X. Jin, T. Huang, K. Wen, M. Chi, and H. An, “HistoSSL: Self-Supervised Representation 

Learning for Classifying Histopathology Images,” Mathematics, vol. 11, no. 1, pp. 110–110, Dec. 2022, 

doi: https://doi.org/10.3390/math11010110. 

[11]. T. Reasat, A. Sushmit, and D. S. Smith, “Data efficient contrastive learning in histopathology 

using active sampling,” Machine Learning with Applications, vol. 17, p. 100577, Sep. 2024, doi: 

https://doi.org/10.1016/j.mlwa.2024.100577. 

[12]. M. Abdel-Nasser, V. K. Singh, and E. M. Mohamed, “Efficient Staining-Invariant Nuclei 

Segmentation Approach Using Self-Supervised Deep Contrastive Network,” Diagnostics, vol. 12, no. 

12, p. 3024, Dec. 2022, doi: https://doi.org/10.3390/diagnostics12123024. 

[13]. J. Li, Y. Zheng, K. Wu, J. Shi, F. Xie, and Z. Jiang, “Lesion-Aware Contrastive Representation 

Learning for Histopathology Whole Slide Images Analysis,” arXiv.org, 2022, doi: 

https://arxiv.org/abs/2206.13115. 
[14]. Zhu, W. Chen, T. Peng, Y. Wang, and M. Jin, “Hard Sample Aware Noise Robust Learning for 

Histopathology Image Classification,” IEEE Transactions on Medical Imaging, vol. 41, no. 4, pp. 881–

894, Apr. 2022, doi: https://doi.org/10.1109/tmi.2021.3125459. 

[15]. T. M. Vollbrecht et al., “Deep learning denoising reconstruction for improved image quality in 

fetal cardiac cine MRI,” Frontiers in Cardiovascular Medicine, vol. 11, Feb. 2024, doi: 

https://doi.org/10.3389/fcvm.2024.1323443. 

[16]. Barsi, S. C. Nayak, Sasmita Parida, and R. M. Shukla, “A deep learning-based compression and 

classification technique for whole slide histopathology images,” International Journal of Information 

Technology, Jun. 2024, doi: https://doi.org/10.1007/s41870-024-01945-4. 

[17]. X. Ren, W. Wei, L. Xia, and C. Huang, “A Comprehensive Survey on Self-Supervised Learning 

for Recommendation,” ACM Computing Surveys, Jun. 2025, doi: https://doi.org/10.1145/3746280. 

[18]. Z. Liu, W. Ding, T. Chen, M. Sun, H. Cai, and C. Liu, “A electricity theft detection method 
through contrastive learning in smart grid,” Eurasip Journal on Wireless Communications and 

Networking, vol. 2023, no. 1, Jun. 2023, doi: https://doi.org/10.1186/s13638-023-02258-z. 

[19]. S. S. Madani, C. Ziebert, Parisa Vahdatkhah, and Sayed Khatiboleslam Sadrnezhaad, “Recent 

Progress of Deep Learning Methods for Health Monitoring of Lithium-Ion Batteries,” Batteries, vol. 10, 

no. 6, pp. 204–204, Jun. 2024, doi: https://doi.org/10.3390/batteries10060204. 

[20]. https://www.kaggle.com/datasets/jirkaborovec/histology-cima-dataset (accessed May 02, 

2024). 

 


	ABSTRACT
	1. Introduction
	2. Research Methodology
	4. Results and Discussion
	5. Conclusion

