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AB S T RACT  

Geological pattern recognition is essential for interpreting subsurface structures, classifying 

lithological units, and guiding exploration activities. This study presents a novel framework that 

leverages Morphological Feature Learning integrated with Tree Seed Optimization for enhanced 

geological pattern recognition. Traditional methods often suffer from low accuracy in complex 

geological environments due to inadequate feature extraction and suboptimal parameter tuning. To 

address these challenges, we propose a Morphological Convolutional Neural Network (Morph-

CNN) that embeds morphological operations such as dilation and erosion into convolutional layers, 

enabling better extraction of shape and texture features relevant to geological formations. Tree Seed 

Optimization (TSO) is employed to automatically fine-tune hyperparameters, boosting the model's 

performance and convergence speed. The proposed framework is applied to lithofacies 

classification in seismic images, where it effectively captures structural features and distinguishes 

between different geological units. Experimental results show a significant improvement in 

classification accuracy, robustness to noise, and interpretability of learned features compared to 

conventional CNNs. This confirms the effectiveness of integrating morphological priors and bio-

inspired optimization in geological pattern recognition. The proposed method gradually improves 

the filter size by 94%, learning rate by 96.2%, batch size by 90%, and number of tree seeds by 

95.7%. 
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1. Introduction 
The accurate identification of geological patterns is essential for many applications, 

such as subsurface modeling, mineral exploration and seismic interpretation [1]. Conventional 

methods rely heavily on manual interpretation and rules-based algorithms that are often time-

consuming and subject to human error, particularly in complex geological contexts [2]. Over 

the last decade, deep learning techniques have displayed considerable success in automating 

pattern recognition tasks, however conventional CNNs seem limited to isolate structural and 

textural patterns found in geological data [3]. To provide a pathway around the limitations of 
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traditional CNNs this research proposes a new framework that has the potential to improve 

geological patterns recognition by integrating Morph with TSO [4]. Morph-CNN to preserve 

high level spatial features and TSO is used to optimize hyperparameters to improve learning 

efficiency and accuracy [5]. It applied the framework towards lithofacies classification from 

seismic images and were able to demonstrate: improved performance, ease of interpreting 

features, and improved robustness of the classification [6]. 

The main objectives of this paper are: 

 To create a Morph-CNN that uses operations like dilation, erosion, opening, and 

closing to make it easier to find the structural and textural features that are critical for 

understanding geological patterns. 

 Use the Tree Seed Optimization method to change the Morph-CNN's hyperparameters 

automatically.  This will make it more stable while working with complicated 

geological datasets, help it converge faster, and make it more accurate. 

 Use the Morph-CNN + TSO framework on real-world seismic data to sort lithofacies 

and observe how well it works compared to standard CNNs and other basic models in 

geological interpretation applications. 

A summary of the research is provided below. In Section 2, the current literature and 

study techniques are thoroughly examined. The research strategy, methodology and processing 

procedures of Morph-CNN are detailed in Section 3. The results analysis is covered in Section 

4. Part 5 explores the main conclusion and Future work. 

2. Research Methodology 
Zhang, K et al. [7] proposed the precious metals in the deep ocean has begun, and 

countries are now trying to protect areas that might have minerals that could help with the 

transition to low-carbon technologies like electric vehicles and wind farms.  But the deep 

bottom is still unexplored and huge, which shows that need to make progress in technology for 

exploration.  Because many new mineral deposits are found in large areas of submarine 

eruptions, it is very important to study seabed processes and patterns to better understand the 

geological events and how they affect each other.   

The formation of mounds on the seabed may provide valuable information on surface 

changes that can be attributed to mineral accumulation, according to Wang, X et al. [8]. There 

are two parts to this investigation concerning these mounds. An encoder-decoder convolutional 

neural network to do semantic segmentation. Using the model's convolution signals generated 

by computer vision algorithms and data processing techniques, the second stage is to cluster 

the segmented features and conduct morphological similarity analysis. Previously, a 

polymetallic mineral was discovered on a mid-ocean ridge, and this study makes use of high-

resolution bathymetric data from that location.  

According to Qiu, Q et al. [9], coral reefs rank high among the planet's most vital 

marine ecosystems. Multiple factors, including the growing impacts of human activity and 

climate change, pose threats to them. In order to monitor and identify coral species that are in 

danger or at risk, automated coral species classification is crucial. For the purpose of coral 

picture classification utilizing the upgraded tree seed algorithm and extreme learning machine 

technology, this study proposes a novel feature descriptor known as the fractal adaptive weight 

synthesized-local directed pattern.  

According to Sultana, S. N. et al. [10], FAWS-LDP is a feature descriptor that integrates 

fractal pixel intensity data with local directional characteristics by indexing the two feature 

vector values. At last, the characteristics that were extracted are sent into the ELM network for 
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sorting. The extreme learning machine (ELM) classifier uses a single-hidden-layer feed-

forward neural network. It picks up new information fast and is skilled at making broad 

assumptions. The network receives unsuitable and unnecessary input biases and weights from 

the ELM classifier's haphazardly selected inputs. To adjust the settings of the ELM classifier, 

an enhanced tree seed algorithm (ETSA) is recommended.  

A novel learning method was suggested by Yao, J. et al. [11] that eliminates issues such 

as decreased coverage rate and local optima. It evaluates ELM with the ETSA optimizer's 

classification performance in comparison to the original genetic algorithm (GA), particle swarm 

optimization (PSO), and artificial bee colony, among other popular metaheuristic algorithm 

trainers. It employs metrics for model performance such as classification accuracy, sensitivity, 

and specificity. The proposed ETSA-ELM consistently outperforms competing methods in 

coral classification datasets. This section concludes with a statistical analysis of the proposed 

feature descriptor approach using a non-parametric Friedman test. 

Alrabayah, O et al. [12] the tree-ring dating is an important tool in many fields, such as 

forest management and the lumber business.  The tree-ring dating on either clean cross-section 

of wood or rough end cross-sections of tree trunks.  But the process of measuring still takes a 

long time and often needs experts with sophisticated tools, such stereoscopes.  Many modern 

methods that use deep learning to process images have worked well in a lot of different fields, 

and they can also find tree rings.   

Srivastava, P et al. [13] supervised deep learning-based algorithms often work quite 

well, but they also need large datasets of data that has been carefully labelled.  A new dataset 

of photos of hardwood species that were meticulously taken and mechanically labelled for tree 

ring recognition.  It takes two pictures of each wood cookie: one of it in its crude shape, like in 

factories, and the other after it has been cleaned very well so that all the growth rings show.  It 

meticulously overlaps the pictures and utilizes them to automatically add ring annotations to 

the preliminary data. 

Savelonas, M. A et al. [14] proposes easy way to get data from UAV aerial photos since 

object detection technology for unmanned aerial vehicles (UAVs) is growing quickly.  They 

can be used for a lot of different things, such monitoring, geological investigation, precision 

agriculture, and early warning of disasters.  In the last several years, a lot of AI-based 

approaches for finding objects with UAVs have been suggested. Deep learning is a big part of 

this subject.  There has been a lot of work in the field of deep-learning-based UAV object 

recognition.  This paper offers a survey of recent studies on using deep learning to find objects 

in UAVs.   

Tang, G et al. [15] survey gives an overview of how UAVs have changed over time and 

outlines the deep-learning-based methods for finding objects with UAVs.  Also, the main 

problems with UAV object identification are looked at, include finding small objects, finding 

objects in complicated backdrops, rotating objects, changing their size, and having too many of 

one type of item.  Then, a summary of several representative deep learning-based solutions for 

various problems is given.  Finally, the article talks about where research in the subject of UAV 

object detection should go in the future. 

Research Gap: Deep learning and optimization have come a long way, but current 

methods for finding geological patterns still have difficulties with limited annotated datasets, 

getting features out of complicated terrains, and changing parameters in a way that doesn't work 

well.  It urgently needs frameworks that combine morphological learning and bio-inspired 

optimization to make things more precise, dependable, and useful in more situations. 
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3. Morphological Convolutional Neural Network 

 

Finding patterns in geological structures is an important step for analysis of the 

subsurface and resource exploration. The procedures in traditional geological classifications are 

limited in feature extraction and accuracy. This paper proposes a Morph-CNN that has been 

enhanced with TSO to allow for better classification of geological structures with more efficient 

feature extraction and hyperparameter tuning. 

 
Figure 1: The Framework of Morphological Convolutional Neural Network 

 

Figure 1, proposes a novel framework that combines Morph-CNN and TSO to enhance 

geological pattern recognition. Because Morph-CNN integrates morphological operations such 

as dilation and erosion into its set of convolutional layers allows Morph-CNN to extract 

significant structural and textural features from the seismic images that will aid in classifying 

and recognizing patterns in the geological data (e.g. faults, folds, lithofacies boundaries, etc.). 

TSO also enhances appropriate hyperparameter tuning, including learning rates and filter size 

configuration, and results in improved convergence to an accurate model. The framework was 

successfully validated on lithofacies classification, improving the accuracy, robustness to noise, 

and interpretability of features thus outperforming CNN in classification of geologic structures, 

supporting Morph-CNN as a real-world approach to geological pattern recognition. 

Algorithm 1: Optimal Filter Size Selection for Morph-CNN using TSO 

𝐼𝑛𝑝𝑢𝑡: 
𝐺: 𝑆𝑒𝑡 𝑜𝑓 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑓𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒𝑠 
𝑂: 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 
𝐵_𝑗(𝑔): 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑏𝑎𝑡𝑐ℎ 𝑗 𝑢𝑠𝑖𝑛𝑔 𝑓𝑖𝑙𝑡𝑒𝑟 𝑔 
𝑈𝑊(𝑔): 𝑇𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 (𝑡𝑒𝑥𝑡𝑢𝑟𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) 𝑜𝑓 𝑓𝑖𝑙𝑡𝑒𝑟 𝑔 
𝛥: 𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 
𝑂𝑢𝑡𝑝𝑢𝑡: 

𝐺𝑇_𝑝𝑞𝑢: 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑓𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒 
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𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑠𝑒𝑙𝑒𝑐𝑡_𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑓𝑖𝑙𝑡𝑒𝑟_𝑠𝑖𝑧𝑒(𝐺, 𝑂, 𝛥): 
    𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 =  −∞ 
    𝐺𝑇_𝑝𝑞𝑢 =  𝑁𝑜𝑛𝑒 

 
    𝑓𝑜𝑟 𝑔 𝑖𝑛 𝐺:  # 𝐿𝑜𝑜𝑝 𝑜𝑣𝑒𝑟 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 
        𝑠𝑢𝑚_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  0 

 
        𝑓𝑜𝑟 𝑗 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(1, 𝑂 +  1): 
            𝐵_𝑗𝑔 
=  𝑔𝑒𝑡_𝑏𝑎𝑡𝑐ℎ_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑗, 𝑔)  # 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑛 𝑏𝑎𝑡𝑐ℎ 𝑗 𝑤𝑖𝑡ℎ 𝑓𝑖𝑙𝑡𝑒𝑟 𝑔 
            𝑠𝑢𝑚_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 +=  𝐵_𝑗𝑔 

 
        𝑎𝑣𝑔_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑠𝑢𝑚_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 / 𝑂 
        𝑈𝑊_𝑔 =  𝑔𝑒𝑡_𝑡𝑒𝑥𝑡𝑢𝑟𝑒_𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛(𝑔)  # 𝑇𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑓𝑖𝑙𝑡𝑒𝑟 𝑔 

 
        𝑠𝑐𝑜𝑟𝑒 =  𝑎𝑣𝑔_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 / (1 +  𝛥 ∗  𝑈𝑊_𝑔) 

 
        𝑖𝑓 𝑠𝑐𝑜𝑟𝑒 >  𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒: 
            𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 =  𝑠𝑐𝑜𝑟𝑒 
            𝐺𝑇_𝑝𝑞𝑢 =  𝑔 
        𝑒𝑙𝑠𝑒: 
            𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒  # 𝑇𝑟𝑦 𝑛𝑒𝑥𝑡 𝑓𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒 

 
    𝑟𝑒𝑡𝑢𝑟𝑛 𝐺𝑇_𝑝𝑞𝑢 

 

The algorithm 1 selects the optimal filter size for Morph-CNN by evaluating each candidate 

filter’s average batch accuracy, adjusted by its texture variation using a regularization constant. 

It chooses the filter with the highest score, enhancing feature learning and classification 

accuracy in geological pattern recognition using TSO optimization. 

A Morph-CNN framework that used Tree Seed Optimization for geological pattern 

recognition. The Morph-CNN with morphological operations and parameter optimization 

showed that it was effective at classifying lithofacies in seismic images. The results acquired 

from traditional or non-traditional CNN columns indicate improved accuracy while also finding 

robust features from the noise in the depth images and conditional interpretability. Therefore, 

TSO-Morph-CNN finds superiority in conventional geological classification. 

 

a) Evaluation Metrics 

To measure and enhance geological pattern detection using Morphological CNN and 

Tree Seed Optimization, specific evaluation measures are developed. These include filter-size 

sensitivity, learning rate consistency, convolutional-layer management, batch size variety, seed 

optimization impact, and effectiveness of morphological operations to ensure the model 

classifies correctly, holds strong robustness, and converges efficiently. 

Analysis of filter size 𝐺𝑇𝑝𝑞𝑢 is expressed using equation 1, 

𝐺𝑇𝑝𝑞𝑢 = arg max
𝑔∈𝐺

[
1

𝑂
∑ (

𝐵𝑗(𝑔)

1 + ∆ ∗ 𝑈𝑊(𝑔)
)

𝑂

𝑗=1

]  (1) 

Equation 1 explains the analysis of filter size is to provide robust feature learning, the 

selection is chosen to optimize average accuracy, which is compensated by filter texture 

variance.  
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In this 𝐺𝑇𝑝𝑞𝑢 is the optimal filter size, 𝑔 ∈ 𝐺 is the candidate filter sizes in filter set, 𝑂 

is the total number of training batches, 𝐵𝑗(𝑔) is the accuracy on the batch using filter, 𝑈𝑊(𝑔) 

is the total variation of filter, and ∆ is the regularization constant. 

Analysis of learning rate 𝜕∗ is expressed using equation 2, 

𝜕∗ = arg max
𝜕

[
1

𝑁
∑(∆𝜗𝑀𝑘(𝜗, 𝜕)2 + 𝛼 ∗ ∇ϑ𝑘

2)

𝑁

𝑘=1

]  (2) 

Equation 2 explains the analysis of learning rate ensures minimal, consistent parameter 

alterations across stages. 

In this 𝜕∗ is the optimal learning rate, 𝜕 is the candidate learning rate, 𝑁 is the number 

of optimization steps, ∆𝜗𝑀𝑘 is the gradient of loss at step, ∇ϑ𝑘
2 is the parameter update at step, 

and 𝛼 is the smoothing regularizer. 

Number of convolutional layers 𝑀∗ is expressed using equation 3, 

𝑀∗ = arg max
𝑀

[
𝑇𝑂𝑆𝑀

1 + 𝛽 ∗ 𝐸𝑀
]  (3) 

Equation 3 explains the optimal number of convolutional layers optimal number while 

penalizing depth-induced depreciation increases the ratio of noise to signal in deep features. 

In this 𝑀∗ is the optimal number of convolutional layers, 𝑇𝑂𝑆𝑀  is the signal-to-noise 

ratio of features at depth, 𝐸𝑀 is the degradation factor due to depth, and 𝛽 is the depth penalty 

coefficient. 

Analysis of batch size 𝐶𝑇𝑝𝑞𝑢 is expressed using equation 4, 

𝐶𝑇𝑝𝑞𝑢 = arg max
𝑐∈𝐶

[
1

𝑈
∑(𝜌𝑢

2(𝑐) + 𝛾 ∗ 𝐷𝑢(𝑐))

𝑈

𝑢=1

]  (4) 

Equation 4 explains that the analysis of batch size is the ideal batch size to choose 

gradient variance and calculation cost are reduced over time. 

In this 𝐶𝑇𝑝𝑞𝑢 is the optimal batch size, 𝑐 ∈ 𝐶 is the candidate batch size from the batch 

size set, 𝑈 is the total training iterations, 𝜌𝑢
2(𝑐) is the gradient variance at time for batch size, 

𝐷𝑢(𝑐) is the computation cost at a time, and 𝛾 is the cost regularization parameter. 

Analysis of the number of tree seeds 𝑈𝑇𝑃∗ is expressed using equation 5, 

𝑈𝑇𝑃∗ = arg max
𝑡∈𝑇

[
1

𝐿
∑(𝑅𝑙(𝑡) − 𝜕 ∗ 𝑆𝑙(𝑡))

𝐿

𝑙=1

]  (5) 

Equation 5 explains the analysis of the number of tree seeds is the ideal number of tree 

seeds that maximizes solution quality while minimizing redundancy. 

In this 𝑈𝑇𝑃∗ is the optimal number of tree seeds, 𝑡 ∈ 𝑇 is the candidate number of 

seeds, 𝐿 is the total optimization iterations, 𝑅𝑙(𝑡) is the quality of the solution in iteration, 𝑆𝑙(𝑡) 

is the redundancy of seed solutions, and 𝜕 is the redundancy penalty coefficient. 

Morphological operation type 𝑁𝑃𝑓𝑔𝑔 is expressed using equation 6, 
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𝑁𝑃𝑓𝑔𝑔 = max
𝜕∈{𝑑,𝑒}

[
𝑁𝐽(𝜕)

1 + 𝛿 ∗ ∇𝐶(𝜕)
]  (6) 

Equation 6 explains the morphological operation type by penalizing boundaries with 

distortion while evaluating mutual information gain, which assesses the most efficient 

morphological operation. 

In this 𝑁𝑃𝑓𝑔𝑔 is the most effective morphological operation, 𝜕 ∈ {𝑑, 𝑒} is the 

morphological operator, 𝑁𝐽(𝜕) is the mutual information between features and class labels 

after, ∇𝐶(𝜕) is the change in feature map boundaries, and 𝛿 is the boundary distortion weight. 

The evaluation measures quantitatively validate the model performance with the 

complex equations to achieve a balance of accuracy, stability, and computational costs that is 

developed by optimization of hyperparameters and morphological features for an overall better 

geological unit classification. These measures are utilized to select effective configurations for 

computational parametric sense, assessment of learning functions, structural interpretation of 

geological significance, and robustness in complex geological settings. 

4. Results and Discussion 
 

The task of geological pattern recognition is a key aspect of subsurface characterization 

and/or exploration of mineral resources. Traditional model approaches very often falter in 

situations where it has complex terrain, this study introduced a Morph-CNN with TSO approach 

and improved feature extraction and tuning the hyperparameters of the Morphological-CNN in 

this geological task of classifying lithofacies types - utilizing seismic image data. 

 

Figure 2: The Analysis of Filter Size 

The size of filters is an important consideration for the Morph-CNN for capturing 

geological features at different scales. Smaller filters would recognize fine features such as 

mineral textures, while larger filters would capture larger features such as faults or beds. 

Selecting and optimizing filter size supports better feature representation by 94% made 

evaluated using equation 1. Tree Seed Optimization will automatically adjust filter size for 

suitable evidence of patterns to maximize recognition performance of the model in Figure 2.  
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Figure 3: The Analysis of Learning Rate  

The learning rate controls how quickly the Morph-CNN model updates its weights 

during training. If the learning rate is set too high, the model may become unstable during 

training. Conversely, if the learning rate is set too low, training will be inefficient, resulting in 

very slow convergence. Tree Seed Optimization adjusts the learning rate during training, taking 

into account the gradient descent loss to support even distribution of learning by 96.2% made 

computed using the equation 2. This could initially slow training down, however, it allowed the 

model to converge faster and improve accuracy when recognizing complicated geological 

patterns in Figure 3.   

Table 1: The Number of Convolutional Layers 

No. of 

Convolutional 

Layers 

Layer Configuration Activation 

Function 

Pooling 

Strategy 

Observed 

Accuracy (%) 

3 [𝐶𝑜𝑛𝑣 → 𝑅𝑒𝐿𝑈 → 𝑃𝑜𝑜𝑙]  ×  3 ReLU Max Pooling 85.2% 

5 [𝐶𝑜𝑛𝑣 → 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚
→ 𝑅𝑒𝐿𝑈
→ 𝑃𝑜𝑜𝑙]  
×  5 

ReLU Max Pooling 91.6% 

7 [𝐶𝑜𝑛𝑣 → 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚
→ 𝑅𝑒𝐿𝑈
→ 𝐷𝑟𝑜𝑝𝑜𝑢𝑡
→ 𝑃𝑜𝑜𝑙]  
×  7 

ReLU Avg + Max 

Pooling 

94.3 

9 [𝐶𝑜𝑛𝑣 → 𝑅𝑒𝐿𝑈 → 𝑃𝑜𝑜𝑙]  ×  9 ReLU Max Pooling 94.5 

 

The number of convolutional layers in the Morph-CNN model directly affects how 

deep it is and how well it can learn.  Three layers speed up training, but they also make features 

less complicated.  Five layers strike a fair balance between precision and the expense of 

computing made evaluated using equation 3.  Seven layers give a lot of hierarchical features 

and dropout to help with regularization.  Nine layers don't make much of a difference in 

accuracy, but they do need a lot more processing power and training time in Table 1. 
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Figure 4: The Analysis of Batch Size 

Batch size is defined as the number of samples processed before the model has its 

weights updated. Smaller batch sizes permit less noise in the updates to the model; however, 

training time is longer. Larger batch sizes result in training time being quicker, but it can lead 

to poor generalization. Within the Morph-CNN framework is valuated using equation 4, Tree 

Seed Optimization can automatically adjust the batch size, which allows for the trade-off 

between training efficiency and accuracy, while further improving the flexibility of model 

capabilities by 90% for accurately recognizing complicated geological patterns in Figure 4. 

 

Figure 5: The Analysis of Number of Tree Seeds 

The amount of tree seeds in Tree Seed Optimization is basically the population size are 

depending on for using exploring the hyperparameter space made valuated using equation 5.  

The more exploration diversity can experience by adding seeds but with experience to realize 

there is a high computational cost to a larger number of seeds, and there are diminishing returns 

when adding more tree seeds.  When it comes to the number of tree seeds in TSO it is about 

finding a balance; leveraging the tree seed population to optimally tune the parameters of the 

Morph-CNN model which will lead to improved convergence, precision, and adaptability of 

the algorithm for geological pattern recognition use cases by 95.7% is shown in Figure 5. 

Table 2: Morphological Operation Type 
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Operation 

Type 

Mathematical 

Function 

Kernel Shape Kernel Size Primary Effect 

Dilation A ⊕ B (Max overlap) Square, Circular 3×3, 5×5 Expands bright 

regions 

Erosion A ⊖ B (Min overlap) Square 3×3, 5×5 Shrinks bright 

regions 

Opening A ○ B = (A ⊖ B) ⊕ B Circular 3×3 Removes small 

objects from the 

foreground 

Closing A ● B = (A ⊕ B) ⊖ B Circular 3×3 Fills small holes 

in the foreground 
 

Morphological operations make it simpler to see geological patterns by modifying the 

way pixels are arranged with kernels made valuated using equation 6.  Dilation makes bright 

areas bigger to show off features, while erosion makes them smaller to show off edges.  

Opening clears up minor noise, making things easier to see, and closure fills in little areas to 

connect broken patterns.  These methods help extract usable textures and structures out of 

seismic or geological images when combined with square or circular kernels in Table 2. 

In summary, a Morph-CNN framework that is combined with tree seed optimization 

for better geological pattern recognition. The process of incorporating the use of morphological 

operations also optimizes and tunes hyperparameters into a Morph-CNN which has improved 

parameter tuning and feature extraction for modified geological tasks and applications. The 

morphological deep or heavy learning framework built around the seismic imaging case is 

better than traditional CNN's in terms of robustness, convergence time, interpretability has been 

validated. 

5. Conclusion 

This paper provides a solid and effective methodology for geological feature 

recognition by combining Morphological Feature Learning and Tree Seed Optimization. By 

enhancing the Morph-CNN architecture to incorporate morphology into the convolutional 

layers, the Morph-CNN architecture could extract shape- and texture-based features for 

geological features. Tree Seed Optimization leveraged to optimally define some 

hyperparameters such as filter size, the learning rate, batch size, and population size , producing 

a better level of convergence and a higher classification rate. The framework was applied to 

lithofacies classification using seismic data which produced material improvements in 

accuracy, noise tolerance, and features that can be interpreted. In terms of the improved 

performance from the framework, the accuracy increased by 94 % when adapting filter size, 

96.2% when tuning the learning rate, 90% when using batch size, and 95.7% optimization 

diversity. These figures confirm the usefulness and performance of using Morph-CNN + TSO 

processes for geo-investigation. 

In the future work, to expand the Morph-CNN + TSO framework to include 3D 

geological data and also multi-modal datasets where the need to conduct analyses deeper into 

the subsurface would be vital, and potentially improve the feature learning through the use of 

attention mechanisms and transformer architectures. Also, plan to investigate and integrate 

domain adaptation technologies where the focus will be on transitioning the geological dataset 

from one geological region to be generalizable to geostatistics across other geological regions. 

The outcome of this research will allow for more global applicability to exploration and 

resource assessment tasks.  
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