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ABSTRACT

Geological pattern recognition is essential for interpreting subsurface structures, classifying
lithological units, and guiding exploration activities. This study presents a novel framework that
leverages Morphological Feature Learning integrated with Tree Seed Optimization for enhanced
geological pattern recognition. Traditional methods often suffer from low accuracy in complex
geological environments due to inadequate feature extraction and suboptimal parameter tuning. To
address these challenges, we propose a Morphological Convolutional Neural Network (Morph-
CNN) that embeds morphological operations such as dilation and erosion into convolutional layers,
enabling better extraction of shape and texture features relevant to geological formations. Tree Seed
Optimization (TSO) is employed to automatically fine-tune hyperparameters, boosting the model's
performance and convergence speed. The proposed framework is applied to lithofacies
classification in seismic images, where it effectively captures structural features and distinguishes
between different geological units. Experimental results show a significant improvement in
classification accuracy, robustness to noise, and interpretability of learned features compared to
conventional CNNs. This confirms the effectiveness of integrating morphological priors and bio-
inspired optimization in geological pattern recognition. The proposed method gradually improves
the filter size by 94%, learning rate by 96.2%, batch size by 90%, and number of tree seeds by
95.7%.

Keywords:  Geological Pattern Recognition, Morphological Feature Learning, Tree Seed
Optimization, Morph-CNN, Lithofacies Classification, Seismic Image Analysis.

1. Introduction

The accurate identification of geological patterns is essential for many applications,
such as subsurface modeling, mineral exploration and seismic interpretation [1]. Conventional
methods rely heavily on manual interpretation and rules-based algorithms that are often time-
consuming and subject to human error, particularly in complex geological contexts [2]. Over
the last decade, deep learning techniques have displayed considerable success in automating
pattern recognition tasks, however conventional CNNs seem limited to isolate structural and
textural patterns found in geological data [3]. To provide a pathway around the limitations of
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traditional CNNs this research proposes a new framework that has the potential to improve
geological patterns recognition by integrating Morph with TSO [4]. Morph-CNN to preserve
high level spatial features and TSO is used to optimize hyperparameters to improve learning
efficiency and accuracy [5]. It applied the framework towards lithofacies classification from
seismic images and were able to demonstrate: improved performance, ease of interpreting
features, and improved robustness of the classification [6].

The main objectives of this paper are:

e To create a Morph-CNN that uses operations like dilation, erosion, opening, and
closing to make it easier to find the structural and textural features that are critical for
understanding geological patterns.

e Use the Tree Seed Optimization method to change the Morph-CNN's hyperparameters
automatically. This will make it more stable while working with complicated
geological datasets, help it converge faster, and make it more accurate.

e Use the Morph-CNN + TSO framework on real-world seismic data to sort lithofacies
and observe how well it works compared to standard CNNs and other basic models in
geological interpretation applications.

A summary of the research is provided below. In Section 2, the current literature and
study techniques are thoroughly examined. The research strategy, methodology and processing
procedures of Morph-CNN are detailed in Section 3. The results analysis is covered in Section
4. Part 5 explores the main conclusion and Future work.

2. Research Methodology

Zhang, K et al. [7] proposed the precious metals in the deep ocean has begun, and
countries are now trying to protect areas that might have minerals that could help with the
transition to low-carbon technologies like electric vehicles and wind farms. But the deep
bottom is still unexplored and huge, which shows that need to make progress in technology for
exploration. Because many new mineral deposits are found in large areas of submarine
eruptions, it is very important to study seabed processes and patterns to better understand the
geological events and how they affect each other.

The formation of mounds on the seabed may provide valuable information on surface
changes that can be attributed to mineral accumulation, according to Wang, X et al. [8]. There
are two parts to this investigation concerning these mounds. An encoder-decoder convolutional
neural network to do semantic segmentation. Using the model's convolution signals generated
by computer vision algorithms and data processing techniques, the second stage is to cluster
the segmented features and conduct morphological similarity analysis. Previously, a
polymetallic mineral was discovered on a mid-ocean ridge, and this study makes use of high-
resolution bathymetric data from that location.

According to Qiu, Q et al. [9], coral reefs rank high among the planet's most vital
marine ecosystems. Multiple factors, including the growing impacts of human activity and
climate change, pose threats to them. In order to monitor and identify coral species that are in
danger or at risk, automated coral species classification is crucial. For the purpose of coral
picture classification utilizing the upgraded tree seed algorithm and extreme learning machine
technology, this study proposes a novel feature descriptor known as the fractal adaptive weight
synthesized-local directed pattern.

According to Sultana, S. N. et al. [10], FAWS-LDP is a feature descriptor that integrates
fractal pixel intensity data with local directional characteristics by indexing the two feature
vector values. At last, the characteristics that were extracted are sent into the ELM network for
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sorting. The extreme learning machine (ELM) classifier uses a single-hidden-layer feed-
forward neural network. It picks up new information fast and is skilled at making broad
assumptions. The network receives unsuitable and unnecessary input biases and weights from
the ELM classifier's haphazardly selected inputs. To adjust the settings of the ELM classifier,
an enhanced tree seed algorithm (ETSA) is recommended.

A novel learning method was suggested by Yao, J. et al. [11] that eliminates issues such
as decreased coverage rate and local optima. It evaluates ELM with the ETSA optimizer's
classification performance in comparison to the original genetic algorithm (GA), particle swarm
optimization (PSO), and artificial bee colony, among other popular metaheuristic algorithm
trainers. It employs metrics for model performance such as classification accuracy, sensitivity,
and specificity. The proposed ETSA-ELM consistently outperforms competing methods in
coral classification datasets. This section concludes with a statistical analysis of the proposed
feature descriptor approach using a non-parametric Friedman test.

Alrabayah, O et al. [12] the tree-ring dating is an important tool in many fields, such as
forest management and the lumber business. The tree-ring dating on either clean cross-section
of wood or rough end cross-sections of tree trunks. But the process of measuring still takes a
long time and often needs experts with sophisticated tools, such stereoscopes. Many modern
methods that use deep learning to process images have worked well in a lot of different fields,
and they can also find tree rings.

Srivastava, P et al. [13] supervised deep learning-based algorithms often work quite
well, but they also need large datasets of data that has been carefully labelled. A new dataset
of photos of hardwood species that were meticulously taken and mechanically labelled for tree
ring recognition. It takes two pictures of each wood cookie: one of it in its crude shape, like in
factories, and the other after it has been cleaned very well so that all the growth rings show. It
meticulously overlaps the pictures and utilizes them to automatically add ring annotations to
the preliminary data.

Savelonas, M. A et al. [14] proposes easy way to get data from UAV aerial photos since
object detection technology for unmanned aerial vehicles (UAVs) is growing quickly. They
can be used for a lot of different things, such monitoring, geological investigation, precision
agriculture, and early warning of disasters. In the last several years, a lot of Al-based
approaches for finding objects with UAVs have been suggested. Deep learning is a big part of
this subject. There has been a lot of work in the field of deep-learning-based UAV object
recognition. This paper offers a survey of recent studies on using deep learning to find objects
in UAVs.

Tang, G et al. [15] survey gives an overview of how UAVs have changed over time and
outlines the deep-learning-based methods for finding objects with UAVs. Also, the main
problems with UAV object identification are looked at, include finding small objects, finding
objects in complicated backdrops, rotating objects, changing their size, and having too many of
one type of item. Then, a summary of several representative deep learning-based solutions for
various problems is given. Finally, the article talks about where research in the subject of UAV
object detection should go in the future.

Research Gap: Deep learning and optimization have come a long way, but current
methods for finding geological patterns still have difficulties with limited annotated datasets,
getting features out of complicated terrains, and changing parameters in a way that doesn't work
well. It urgently needs frameworks that combine morphological learning and bio-inspired
optimization to make things more precise, dependable, and useful in more situations.
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3. Morphological Convolutional Neural Network

Finding patterns in geological structures is an important step for analysis of the
subsurface and resource exploration. The procedures in traditional geological classifications are
limited in feature extraction and accuracy. This paper proposes a Morph-CNN that has been
enhanced with TSO to allow for better classification of geological structures with more efficient
feature extraction and hyperparameter tuning.
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Figure 1: The Framework of Morphological Convolutional Neural Network

Figure 1, proposes a novel framework that combines Morph-CNN and TSO to enhance
geological pattern recognition. Because Morph-CNN integrates morphological operations such
as dilation and erosion into its set of convolutional layers allows Morph-CNN to extract
significant structural and textural features from the seismic images that will aid in classifying
and recognizing patterns in the geological data (e.g. faults, folds, lithofacies boundaries, etc.).
TSO also enhances appropriate hyperparameter tuning, including learning rates and filter size
configuration, and results in improved convergence to an accurate model. The framework was
successfully validated on lithofacies classification, improving the accuracy, robustness to noise,
and interpretability of features thus outperforming CNN in classification of geologic structures,
supporting Morph-CNN as a real-world approach to geological pattern recognition.

Algorithm 1: Optimal Filter Size Selection for Morph-CNN using TSO
Input:

G: Set of candidate filter sizes

O: Total number of training batches

B_j(g): Accuracy function for batch j using filter g

UW (g): Total variation (texture variance) of filter g

A: Regularization constant

Output:
GT _pqu: Optimal filter size
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function select_optimal_filter_size(G, 0,A4):
best_score = —oo
GT _pqu = None

for ginG: # Loop over candidate filters
sum_accuracy = 0

forjinrange(1,0 + 1):
B jg
= get_batch_accuracy(j,g) # Accuracy on batch j with filter g
sum_accuracy += B_jg

avg_accuracy = sum_accuracy /O
UW_g = get_texture_variation(g) # Total variation for filter g

score = avg_accuracy /(1 + A = UW_g)

if score > best_score:
best_score = score
GT_pqu = g

else:
continue # Try next filter size

return GT _pqu

The algorithm 1 selects the optimal filter size for Morph-CNN by evaluating each candidate
filter’s average batch accuracy, adjusted by its texture variation using a regularization constant.
It chooses the filter with the highest score, enhancing feature learning and classification
accuracy in geological pattern recognition using TSO optimization.

A Morph-CNN framework that used Tree Seed Optimization for geological pattern
recognition. The Morph-CNN with morphological operations and parameter optimization
showed that it was effective at classifying lithofacies in seismic images. The results acquired
from traditional or non-traditional CNN columns indicate improved accuracy while also finding
robust features from the noise in the depth images and conditional interpretability. Therefore,
TSO-Morph-CNN finds superiority in conventional geological classification.

a) Evaluation Metrics

To measure and enhance geological pattern detection using Morphological CNN and
Tree Seed Optimization, specific evaluation measures are developed. These include filter-size
sensitivity, learning rate consistency, convolutional-layer management, batch size variety, seed
optimization impact, and effectiveness of morphological operations to ensure the model
classifies correctly, holds strong robustness, and converges efficiently.

Analysis of filter size GT),q,, is expressed using equation 1,

B;(9)
OToqu = arg OZ <1 +Ax UW(g)) W

Equation 1 explains the analysis of filter size is to provide robust feature learning, the
selection is chosen to optimize average accuracy, which is compensated by filter texture
variance.
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In this GT, 4, is the optimal filter size, g € G is the candidate filter sizes in filter set, O
is the total number of training batches, B;(g) is the accuracy on the batch using filter, UW (g)
is the total variation of filter, and A is the regularization constant.

Analysis of learning rate 0" is expressed using equation 2,

N
1
0 = argmgix [NZ(Ang(ﬁ,a)z + a * Vﬁi) (2)

Equation 2 explains the analysis of learning rate ensures minimal, consistent parameter
alterations across stages.

In this @* is the optimal learning rate, d is the candidate learning rate, N is the number
of optimization steps, Ay M, is the gradient of loss at step, V9% is the parameter update at step,
and « is the smoothing regularizer.

Number of convolutional layers M* is expressed using equation 3,

TOSy

1+« EM] )

M* = arg max [
Equation 3 explains the optimal number of convolutional layers optimal number while
penalizing depth-induced depreciation increases the ratio of noise to signal in deep features.

In this M* is the optimal number of convolutional layers, TOS,, is the signal-to-noise
ratio of features at depth, E); is the degradation factor due to depth, and £ is the depth penalty
coefficient.

Analysis of batch size CTyq,, is expressed using equation 4,

U
1
CTpqu = argmax [EZ(pﬁ(c) +y* Du(c))] 4)
u=1
Equation 4 explains that the analysis of batch size is the ideal batch size to choose

gradient variance and calculation cost are reduced over time.

In this CT, gy, is the optimal batch size, ¢ € C is the candidate batch size from the batch

size set, U is the total training iterations, p2(c) is the gradient variance at time for batch size,
D, (c) is the computation cost at a time, and y is the cost regularization parameter.

Analysis of the number of tree seeds UTP™ is expressed using equation 5,

L
UTP* = arg max [%Z(Rl(t) — 0 * Sl(t))] (5)
=1

Equation 5 explains the analysis of the number of tree seeds is the ideal number of tree
seeds that maximizes solution quality while minimizing redundancy.

In this UTP* is the optimal number of tree seeds, t € T is the candidate number of
seeds, L is the total optimization iterations, R;(t) is the quality of the solution in iteration, S;(t)
is the redundancy of seed solutions, and 0 is the redundancy penalty coefficient.

Morphological operation type NPf g, is expressed using equation 6,
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Nj(9)

NFrog = 2% [1 + 5 vc(a)] ©)

Equation 6 explains the morphological operation type by penalizing boundaries with
distortion while evaluating mutual information gain, which assesses the most efficient

morphological operation.

In this NPgq is the most effective morphological operation, d € {d, e} is the
morphological operator, NJ(3) is the mutual information between features and class labels
after, VC () is the change in feature map boundaries, and & is the boundary distortion weight.

The evaluation measures quantitatively validate the model performance with the
complex equations to achieve a balance of accuracy, stability, and computational costs that is
developed by optimization of hyperparameters and morphological features for an overall better
geological unit classification. These measures are utilized to select effective configurations for
computational parametric sense, assessment of learning functions, structural interpretation of
geological significance, and robustness in complex geological settings.

4. Results and Discussion

The task of geological pattern recognition is a key aspect of subsurface characterization
and/or exploration of mineral resources. Traditional model approaches very often falter in
situations where it has complex terrain, this study introduced a Morph-CNN with TSO approach
and improved feature extraction and tuning the hyperparameters of the Morphological-CNN in
this geological task of classifying lithofacies types - utilizing seismic image data.

PSO

ELM e
ETSA - ; ~—
Morph-CNN - ™~

—

Figure 2: The Analysis of Filter Size

The size of filters is an important consideration for the Morph-CNN for capturing
geological features at different scales. Smaller filters would recognize fine features such as
mineral textures, while larger filters would capture larger features such as faults or beds.
Selecting and optimizing filter size supports better feature representation by 94% made
evaluated using equation 1. Tree Seed Optimization will automatically adjust filter size for
suitable evidence of patterns to maximize recognition performance of the model in Figure 2.
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Figure 3: The Analysis of Learning Rate

The learning rate controls how quickly the Morph-CNN model updates its weights
during training. If the learning rate is set too high, the model may become unstable during
training. Conversely, if the learning rate is set too low, training will be inefficient, resulting in
very slow convergence. Tree Seed Optimization adjusts the learning rate during training, taking
into account the gradient descent loss to support even distribution of learning by 96.2% made
computed using the equation 2. This could initially slow training down, however, it allowed the
model to converge faster and improve accuracy when recognizing complicated geological
patterns in Figure 3.

Table 1: The Number of Convolutional Layers

No. of | Layer Configuration Activation Pooling Observed
Convolutional Function Strategy Accuracy (%)
Layers
3 [Conv » ReLU - Pool] x 3 | ReLU Max Pooling | 85.2%
5 [Conv — BatchNorm ReLU Max Pooling | 91.6%
- RelLU
- Pool]
X 5
7 [Conv = BatchNorm ReLU Avg + Max | 94.3
- RelLU Pooling
— Dropout
- Pool]
X 7
9 [Conv = RelLU = Pool] X 9 | ReLU Max Pooling | 94.5

The number of convolutional layers in the Morph-CNN model directly affects how
deep it is and how well it can learn. Three layers speed up training, but they also make features
less complicated. Five layers strike a fair balance between precision and the expense of
computing made evaluated using equation 3. Seven layers give a lot of hierarchical features
and dropout to help with regularization. Nine layers don't make much of a difference in
accuracy, but they do need a lot more processing power and training time in Table 1.
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Figure 4: The Analysis of Batch Size

Batch size is defined as the number of samples processed before the model has its
weights updated. Smaller batch sizes permit less noise in the updates to the model; however,
training time is longer. Larger batch sizes result in training time being quicker, but it can lead
to poor generalization. Within the Morph-CNN framework is valuated using equation 4, Tree
Seed Optimization can automatically adjust the batch size, which allows for the trade-off
between training efficiency and accuracy, while further improving the flexibility of model
capabilities by 90% for accurately recognizing complicated geological patterns in Figure 4.

PSO
ELM
ETSA

Morph-CNN

Figure 5: The Analysis of Number of Tree Seeds

The amount of tree seeds in Tree Seed Optimization is basically the population size are
depending on for using exploring the hyperparameter space made valuated using equation 5.
The more exploration diversity can experience by adding seeds but with experience to realize
there is a high computational cost to a larger number of seeds, and there are diminishing returns
when adding more tree seeds. When it comes to the number of tree seeds in TSO it is about
finding a balance; leveraging the tree seed population to optimally tune the parameters of the
Morph-CNN model which will lead to improved convergence, precision, and adaptability of
the algorithm for geological pattern recognition use cases by 95.7% is shown in Figure 5.

Table 2: Morphological Operation Type
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Operation Mathematical Kernel Shape Kernel Size | Primary Effect

Type Function

Dilation A @ B (Max overlap) | Square, Circular 3x3, 5%5 Expands bright
regions

Erosion A © B (Min overlap) | Square 3x3, 5%5 Shrinks bright
regions

Opening AoB=(AS B)@®B | Circular 3x3 Removes small
objects from the
foreground

Closing AeB=(A® B)©S B | Circular 3x3 Fills small holes
in the foreground

Morphological operations make it simpler to see geological patterns by modifying the
way pixels are arranged with kernels made valuated using equation 6. Dilation makes bright
areas bigger to show off features, while erosion makes them smaller to show off edges.
Opening clears up minor noise, making things easier to see, and closure fills in little areas to
connect broken patterns. These methods help extract usable textures and structures out of
seismic or geological images when combined with square or circular kernels in Table 2.

In summary, a Morph-CNN framework that is combined with tree seed optimization
for better geological pattern recognition. The process of incorporating the use of morphological
operations also optimizes and tunes hyperparameters into a Morph-CNN which has improved
parameter tuning and feature extraction for modified geological tasks and applications. The
morphological deep or heavy learning framework built around the seismic imaging case is
better than traditional CNN's in terms of robustness, convergence time, interpretability has been
validated.

5. Conclusion

This paper provides a solid and effective methodology for geological feature
recognition by combining Morphological Feature Learning and Tree Seed Optimization. By
enhancing the Morph-CNN architecture to incorporate morphology into the convolutional
layers, the Morph-CNN architecture could extract shape- and texture-based features for
geological features. Tree Seed Optimization leveraged to optimally define some
hyperparameters such as filter size, the learning rate, batch size, and population size , producing
a better level of convergence and a higher classification rate. The framework was applied to
lithofacies classification using seismic data which produced material improvements in
accuracy, noise tolerance, and features that can be interpreted. In terms of the improved
performance from the framework, the accuracy increased by 94 % when adapting filter size,
96.2% when tuning the learning rate, 90% when using batch size, and 95.7% optimization
diversity. These figures confirm the usefulness and performance of using Morph-CNN + TSO
processes for geo-investigation.

In the future work, to expand the Morph-CNN + TSO framework to include 3D
geological data and also multi-modal datasets where the need to conduct analyses deeper into
the subsurface would be vital, and potentially improve the feature learning through the use of
attention mechanisms and transformer architectures. Also, plan to investigate and integrate
domain adaptation technologies where the focus will be on transitioning the geological dataset
from one geological region to be generalizable to geostatistics across other geological regions.
The outcome of this research will allow for more global applicability to exploration and
resource assessment tasks.
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