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ABSTRACT

Crop growth prediction plays a crucial role in precision agriculture, where accurate insights
into crop behavior can significantly enhance yield and resource utilization. This paper presents
a novel approach for pattern discovery in crop growth data using a Gradient-Based Ant Lion
Optimization (GBALO) model. Traditional methods often struggle with high-dimensional
agricultural datasets and lack the adaptability to select optimal features for prediction, resulting
in poor model performance and low prediction accuracy. To overcome these challenges, the
proposed GBALO framework integrates gradient-based learning into the Ant Lion
Optimization algorithm for efficient feature selection and model parameter tuning. This hybrid
model is further combined with predictive modeling techniques, such as Random Forest, to
build an accurate and interpretable crop growth prediction system. The proposed method is
applied to real-world paddy cultivation data, enabling effective identification of key factors
influencing growth and yield. It not only enhances predictive accuracy but also aids farmers
and researchers in making informed decisions based on discovered patterns. Experimental
results demonstrate that the GBALO-based model outperforms existing approaches in terms of
accuracy, feature relevance, and computation time, thus establishing a robust framework for
intelligent agricultural analytics.

Keywords:  Crop Growth Prediction, Ant Lion Optimization, Feature Selection, Gradient-Based
Optimization, Precision Agriculture, Pattern Discovery.

1. Introduction

Precision agriculture is a burgeoning form of sustainable agriculture that is now in
vogue with the advent of data-driven methodologies and techniques to increase crop
production, resource use, and to improve environmental performance [1]. Crop growth patterns
and analysis are integral in underpinning a plant's expected behaviors, identifying factors that
affect those behaviors, and informing legislative agronomic decision treatment when utilizing
precision agriculture methods. Crop growth data is difficult to analyze as resources are high-
dimensional and data are stochastic with temporal and spatial variation [2]. These factors create
complex and nonlinear interactions between parameters such as soil mix, temperature,
humidity, rainfall, pest activity, and fertilizer use. While challenging, computational
intelligence techniques have been successfully implemented within large-scale agriculture data
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[3]. These approaches differ from standard general approaches, such as prediction and machine
learning inputs.

While computational intelligence techniques are rising in their exploration and could
provide a better understanding of larger patterns, as well as predictive models of higher-
dimensional parameters or data, their application in agriculture has been limited. A related
advancement in precision agriculture subject is metaheuristic optimization [4]. Metaheuristic
optimization takes advantage of natural processes and techniques to search for patterns and
explore solution domains in possibly multi-dimensional spaces, particularly within agriculture
and crop growth. More specifically, the ALO algorithm appears to be the metaheuristic
optimizer most capable of identifying and solving challenging problems [5]. This implies
effective dynamic exploration-exploitation improvements, and robustness while processing
multimodal landscapes [6].

The ALO algorithm originated from the hunting behavior of antlions in nature, whose
hunting strategy is based upon trapping ants in sand pits and using their mobility to optimize
their search. The ALO algorithm, with its natural model for population-based exploration and
exploitation aspects, provides a good balance [7]. However, the convergence rate and accuracy
of ALO can fall short on more complex tasks, such as crop growth prediction with noisy,
redundant features; therefore, it would likely be challenged by high-dimensional crop growth
prediction tasks. To improve upon the performance of standard ALO, this research proposes
GBALO, which builds upon the ALO framework while incorporating principles from gradient
descent learning. The gradient component can direct the search to the steepest descent in the
fitness landscape, thereby improving convergence rates while reducing the risk of local optima.

The goal of GBALO in this paper [8] is: feature selection and optimization of model
hyperparameters. In agricultural predictive modeling, feature selection is crucial because
irrelevant and redundant variables can diminish the performance and validity of the model. The
GBALO will dynamically select optimal subsets of features that are most critical to crop growth
prediction. After selections, the model hyperparameters of machine learning algorithms will be
optimized by GBALO. This integrated framework was applied to a real-world dataset on paddy
cultivation, which contained both time-series and spatial data on indicators of crop growth [9].
The paper aims to identify latent patterns and relationships that affect paddy yields in different
environmental and management contexts. The GBALO-based framework outperformed
optimization methods and baselines of various supervised learning algorithms by exhibiting
better prediction accuracy, quicker convergence, and more interpretable results. The different
results of this paper not only contribute to the field of agricultural informatics but also provide
a foundation for developing intelligent decision-support systems for farmers and agronomists
[10]. This paper presents a practical data mining and optimization approach that enhances
planning, resource distribution, and policy-making related to agriculture.

Problem Statement

High-dimensional, nonlinear, and noisy crop growth data hinder the discovery of
accurate patterns and yield prediction; existing models lack efficiency in feature selection and
optimization, thereby limiting their effectiveness in precision agriculture.

The main contribution of this paper is:

e GBALO, an improved metaheuristic algorithm that combines gradient descent with Ant
Lion Optimization to achieve faster convergence and better accuracy in high-dimensional
crop growth modeling tasks.
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e A novel framework is developed using GBALO for simultaneous feature selection and
model tuning, improving both predictive performance and computational efficiency in
agricultural data analysis.

e The proposed method is applied to real paddy cultivation datasets, effectively discovering
key growth patterns and enhancing yield prediction accuracy under varying environmental
and agronomic conditions.

A summary of the research is provided below. In Section 2, literature review and study
techniques are thoroughly examined. The GBALO is detailed in Section 3. The results and
discussion are covered in Section 4. Part 5 explores the main conclusion and Future work.

Literature Review

Recent advancements in precision farming have leveraged machine learning (ML),
deep learning (DL), and UAV-based sensing to enhance crop monitoring and yield forecasting.
Current studies conclude that the correct identification of the disease, distinguishing weeds, and
approximating the amount of chlorophyll need to be achieved through automated methods.
Despite these limitations, the speed of convergence, feature selection, and generalization are
still constrained. This review discusses some of the options, their strengths in addressing
challenges, and how they can be encouraged to create a stronger one, such as the GBALO.

Qiao et al. [11] presented in their paper that precision agriculture management relies
on accurate estimates of chlorophyll content to track the growth status and photosynthetic
capability of maize canopies. Due to issues with soil background inhibition and the instability
of estimates in the face of dynamic changes in plant biomass, the predicted field chlorophyli
content using a vegetation index is never without its challenges. Unmanned Aerial Vehicle-
based Chlorophyll Content (UAV-CC) estimation was conducted by evaluating VI responses
under different crop coverages. To investigate the variations in responsiveness and resilience
for chlorophyll estimation, VIs were analyzed under various crop covering situations.

Elbasi et al. [12] have revolutionized data processing and decision-making, and
Machine Learning (ML) applications are significantly influencing economies worldwide. In
light of the worldwide food shortage, agriculture is one sector that stands to lose significant
ground. In this paper, look at the pros and cons of using machine learning algorithms in
contemporary farming. The primary goal of these algorithms is to make informed decisions
about when and how much to plant, irrigate, and harvest crops, with the secondary goal of
optimizing crop yield and minimizing waste.

Gallo et al. [13] demonstrated that spreading agrochemicals, which may have harmful
effects on the environment, is a standard practice to sustain agricultural yields and combat
weeds, which pose a significant threat to agriculture. Intelligent application-supporting methods
are required. For this reason, site-specific weed control relies heavily on identification and
mapping. The spatial explicit dimensions of imaging, along with the high resolution and
flexibility of data capture, make Unmanned Aerial Vehicle (UAV) data streams ideal for weed
identification.

Attri et al. [14] demonstrated that Deep learning (DL) has shown significant potential
in the agricultural industry as a powerful tool for data analysis and image processing. In this
paper, all topics pertain to DL and its agrarian applications; the topics covered are smart
farming, weed and pest detection, crop yield prediction, plant stress detection, and disease
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detection. Managing water, analyzing seeds, and analyzing soil are all parts of smart farming.
The paper emphasizes that deep learning has the potential to enhance economic development
and agricultural productivity.

Liu et al. [15] suggested that Pests and illnesses that affect plants significantly impact
their productivity and quality. Digital image processing facilitates the detection of pests and
diseases that affect plants. When compared to more conventional approaches, deep learning's
recent achievements in Digital Image Processing (DIP) are light years ahead of the pack. A
significant focus of the paper has been on developing effective methods for identifying pests
and diseases in plants using deep learning technologies. The term "plant diseases and pests
detection problem™ is defined and compared to more conventional approaches in this paper.

Shoaib et al. [16] demonstrated that the world's food supply relies heavily on plants.
Plant diseases cause substantial output losses due to various environmental conditions.
Identifying plant diseases by hand is a laborious and clumsy procedure. It is not always an
accurate method for detecting and stopping the spread of plant diseases. One way to tackle these
difficulties is by using modern technologies like DL and ML. These will enable the early
detection of plant diseases.

Latif et al. [17] provided sustenance for more than half of the world's population. Rice
is often regarded as one of the most important plants on the planet. Diseases may impact the
amount and quality of rice, just as they do other plants. It may occasionally result in a decrease
in harvest yield. Farmers need to be well-versed in various illnesses and able to recognize them
physically, which can help detect them early and impact yield. Despite this, farmers still cannot
possibly conduct a daily inspection of the enormous farmlands.

Chen et al. [18] identified several factors more consequential to agricultural output than
weeds. The ecological damage and waste caused by the widespread use of full-coverage
chemical pesticides in farm areas are becoming increasingly apparent. Accurately
differentiating crops from weeds and achieving precision spraying of only weeds are becoming
increasingly critical as agricultural productivity continues to improve. This paper examines two
approaches to addressing weed identification issues, utilizing both deep learning-based
algorithms and conventional image processing methods.

Kasinathan et al. [19] demonstrated a significant opportunity for the agricultural
industry to increase both the supply of healthy food and its demand for healthy food. Farmers
face a challenging task in identifying agrarian pests, as they can severely damage and reduce
the quality of many crops. Skilled taxonomists are required for traditional insect identification,
as it necessitates a high degree of accuracy when identifying insects solely by their physical
characteristics.

Bharadiya et al. [20] suggest that timely decisions regarding food policy, market
pricing, import/export regulations, and permissible warehousing may be aided by crop output
estimates. Natural disasters, such as floods and droughts, can have devastating socioeconomic
impacts, but there are ways to mitigate these consequences and even coordinate food aid for
those in need. A potential application of deep learning in agricultural production prediction is
the ability to enable the model to autonomously extract characteristics and learn from existing
datasets.

3. A Model for the GBALO Model.

This paper proposes a new framework, GBALO, that integrates crop growth modeling
and yield prediction. GBALO is a hybrid algorithm that combines gradient descent with the ant
lion optimizer, thereby enhancing the feature selection and hyperparameter tuning processes.
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When applied to real-world paddy datasets, the models and predictors indicated improved
predictions, decreased computational cost, and supported precision agriculture.
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Figure 1: GBALO Algorithm and Optimization Framework

Figure 1 illustrates a comprehensive pipeline for crop growth prediction utilizing
GBALO. The process begins with raw crop growth data. The data is pre-processed to account
for any noise and to normalize the features. By employing GBALO, an advanced metaheuristic
that combines the ant lion optimization technique with gradient descent, the algorithm performs
feature selection concurrently with hyperparameter tuning. This enables GBALO to enhance
the readability of input variables and improve the efficiency of the learning algorithm. A tuned
model will be trained, resulting in improved accuracy and faster convergence. This pipeline
will enhance the efficiency and accuracy of agro-predictive research while decreasing the
computational expense.
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Figure 2: Real-World Application to Paddy Yield Prediction

Figure 2 illustrates the application of a GBALO-based framework to real-world paddy
production data, including soil properties, climate, and fertilizer inputs, utilizing the GBALO
algorithm for intelligent feature selection and model tuning to enhance the predictive
performance of machine learning models. In this optimized framework, important patterns
about key growth (as well as key agronomic) factors that influence crop behavior were
investigated. Once developed, the result is a highly accurate yield prediction system providing
valuable insights and decision support to various stakeholders (or managers) involved in paddy
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production. Thus, the yield prediction system improves resource planning and provides support
for a data-driven agricultural approach.

Algorithm 1: GBALO-Based Paddy Yield Prediction Using Intelligent Feature
Selection and Evaluation

Step 1: Input

Input: Soil data, climate data, fertilizer input, and crop yield records

Step 2: Preprocessing

Clean the data

Normalize all input features

Split data into training and testing

Step 3: Initialize GBALO Algorithm
Set number of agents and iterations
Randomly create initial feature subsets for each agent

Step 4: Feature Selection using GBALO
For each agent:

Train model using current features
Calculate error (fitness)

If current error is lower than best so far:

Save current features as best

Else:

Update features using GBALO rules (optimization + gradient info)
End If

End For

Step 5: Train Final Model
Use best selected features
Train machine learning model (like Random Forest or XGBoost)

Step 6: Evaluate Model

Accuracy (BDD)

Set BDD = 0

For each test sample:
If predicted = actual:

delta = 1
Else:
delta = 0
End If

gradient = model gradient for this sample
BDD += delta / (1 + exp(—abs(gradient)))
End For

BDD = BDD / total_samples

RMSE (SNTD)

Set SNTD = 0

For each sample:

error = predicted — actual

penalty = sum of absolute weights of selected features
SNTD += error + (lambda * penalty)
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End For
SNTD = sqrt(SNTD / total_samples)

Step 7: Extra Checks

If number of features selected is small:
Print("Good feature selection™)

Else:

Print("Too many features selected")
End If

If model converges fast:
Print("Ef ficient model™)
Else:

Print("Slow convergence")
End If

Step 8: Output

Show predicted yields, BDD accuracy, SNTD error,selected features

The GBALO-based paddy yield prediction system uses soil, climate, and fertilizer data
to predict crop yield is explained in algorithm 1. It begins with data cleaning and normalization,
followed by intelligent feature selection using the GBALO algorithm, which combines
optimization and gradient-based learning. If a feature subset improves prediction accuracy, it is
kept; otherwise, it’s updated. A machine learning model is trained on the selected features. If
selected features are few and convergence is fast, the model is considered efficient. The system
outputs predictions, accuracy, error, and selected key features.

Prior research has employed machine learning and metaheuristic algorithms for
agricultural forecasting, including Ant Lion Optimization; however, these approaches have
tended to focus less on convergence speed and precise feature selection or inclusion. There are
more recent methods specifically employing both optimization and gradient information, which
appear to hold promise. GBALO builds on these ideas and further enhances overall efficiency
and predictive value.

a) Evaluation Metrics

To thoroughly assess the GBALO-based crop growth prediction model, a
comprehensive set of evaluation measures is applied, including accuracy, RMSE, convergence
speed, feature selection ratio, Fl-score, and computational complexity. These measures
quantify the predictive consistency of the model, the optimization characteristics of the model,
the feature selection aspect of the model, the classification accuracy of the model, and the
computational cost in the high-dimensional agricultural data.

The accuracy BDD is calculated using equation 1 as follows:

1 V(Z = yj)
BDD =5+ Z (1 N f-|at,-*M<Rt,Mq)|> M

Jj=1

This equation calculates accuracy with a gradient-weighted correction, applying the derivative
of loss. The sigmoid serves as a confidence decay for incorrectly classified samples.

Total number of samples O, and the actual label of the sample V(z = yj), along with
the predicted label of the sample R;. and the Ronecker delta function d;; * M, along with the
gradient of loss f to parameters.
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The error of the root mean square SNTD was evaluated using equation 2

0 G
1
SNTD = F*Z(aj—32)+v><2|o<k| (2)
j=1 k=1

The RMSE is penalized P with a regularization term based on Lasso-type norms a; —
B, to account for overfitting V in high-dimensional agricultural data |oc;|.

Number of observations, true and predicted values G, regularization coefficient j,
model parameter O, and the total number of selected features, where the regularization norm
exponent.

The convergence speed DT is calculated using equation 3

U
_1 z
_5

u=1

This measure summarizes S the average relative fitness improvement U over iterations in
GBALO optimization.

u 1

Y] (3)

Total number of iterations G, fitness value at iteration d, and a small constant to avoid
division by zero.

The ratio of feature selection GTS is calculated using equation 4
ell

675 = -+ Z(”‘g;;all Y[z ¥> (4)

The FSR incorporates the sparsity of selected features N and a relevance threshold
gfl"’l to ensure that only meaningful features are maintained.

total

Number of cross- Vahdatlon folds or trials g, ***, vector of selected features in trial V,

total feature vector in trial gn , horm (counts non-zero entries), feature importance scoring
function, and minimum relevance threshold.

The F1-score value was evaluated using equation 5
(—) (1-va +f)
Vi —nq

fi=2 — )
(G72)

This modified F1-score applies smoothing (dn) to avoid numerical instability Vj’ during
division in imbalanced crop datasets.

Here, true positives Va', false positives nq, false negatives f, and a small constant to prevent
division by zero.

The computational complexity DD is calculated using equation 6
DD = p(h.M.q.log(G) + 0 * E* + q.U.G) (6)

The overall cost combines optimization (GBALO), RF training cost p, and gradient-based
parameter adaptation for predicting crop growth.
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Here, the number of antlions (population size) h. M. q, the number of data points log(G), and
the number of features, the depth of random forest trees q. U. G, the cost of gradient computation

per feature EZ, and the number of GBALO iterations.

The evaluation indicates that the GBALO model exhibits the following advantages:
increased accuracy and decreased RMSE, fast-converging behavior, effective feature subset
selection, robust F1 scores in the presence of imbalanced classes, and computational feasibility.
These evaluations collectively demonstrate the model’s ability to identify valuable insights for
enhancing yield prediction and contributing to intelligent agricultural decision-making.

4. Results and Discussion

This section presents a comprehensive analysis of the GBALO framework's performance in
comparison to UAV-CC, ML, and DL models, using the Rice Crop Yield Prediction dataset as an
example application. Performance measures (accuracy, RMSE, convergence rate, F1-score, feature
selection ratio, and computation time) demonstrated the effectiveness, efficiency, and suitability of

the GBALO framework for real-world use.

a) Dataset Description

The Rice Crop Yield Prediction dataset from Kaggle supports machine learning models
to estimate rice or wheat yield per acre in India. It includes features like soil quality, rainfall,
and fertilizer use. This dataset helps optimize farming decisions, improve food security, and
promote sustainable agriculture in the face of climate challenges [21].

Table 1: Parameterized table
Feature Name
Clone size
Honeybee
Bumbles
Andrena
Osmia
MaxOfUpperTRange
MinOfUpperTRange
AverageOfUpperTRange
MaxOfLowerTRange
MinOfLowerTRange
AverageOfLowerTRange
RainingDays

AverageRainingDays
Fruit set

Fruitmass

Vol.No : 2 Issue No : 3 Aug 2025

s€ason

Description

Average size of blueberry clones (m?)
Honeybee density (bees/m?/min)
Bumblebee density (bees/m?/min)
Andrena bee density (bees/m?/min)
Osmia bee density (bees/m?/min)
Max upper daily temperature (°C)
Min upper daily temperature (°C)
Avg upper daily temperature (°C)
Max lower daily temperature (°C)
Minimum daily temperature (°C)
Avg lower daily temperature (°C)

Number of rainy days during bloom

Average rainy days during bloom season
Measure of fruit set timing

Mass of fruit produced

48



PatternlQ Mining
https://pigm.saharadigitals.com/

Seeds Number of seeds per fruit

Yield Final crop yield (target variable)

b) Accuracy (%)

Accuracy is a crucial metric that reflects the ratio of correct classwise predictions to
total instances. For systems predicting crop yield or classifying growth, high accuracy indicates
reliable real-world agricultural representation, as shown in equation 1. This is vital for assessing
growth stages, disease characteristics, or categorical performance. While accuracy measures
overall effectiveness, it's important to also consider other metrics like precision, recall, and F1
score to avoid overly optimistic results, particularly in cases of imbalanced classes or varying
environmental conditions.

4 —s—yAv-CC
T ——ML
=——DL
—y—GBALO

g

£
>

(N

A /NN

Accuracy (%)

T T T
100 150 200 250 300 350 400

No.of Samples

Figure 3: Accuracy

Figure 3 illustrates the accuracy of four models, UAV-CC, ML, DL, and GBALO, as
the sample sizes increase. GBALO consistently performs better, achieving a rate of almost 94%.
DL demonstrates continuous growth, while ML and UAV-CC maintain the same level or
experience a slight decrease. It points to the strength and scalability of GBALO in terms of
yield prediction.

c) Root Mean Square Error

RMSE measures the average squared differences between actual and predicted values,
providing insight into prediction accuracy in regression tasks like crop yield estimation (in
kilograms per acre). Lower RMSE values indicate better model fit, while its sensitivity to large
errors makes it useful for minimizing significant prediction inaccuracies. RMSE is particularly

—a—UAV-CC
028 | =L
——DL
226 ] | —,—cBALO <

b
o
|

Root Mean.Square Error
e e .

T T T T
100 150 200 250 300 350 400

No.of Samples

49
ISSN: 3006-8894



Pattern Discovery in Crop Growth Data Using a Gradient Based Ant Lion Optimization
Model Aisyah Binti Abdullah & Hafiz Bin Ismail

relevant for continuous outcomes in agriculture, such as yield prediction, where precision
farming can assess crop performance under varying conditions.

Figure 4: Root Mean Square Error

Figure 4 shows that the Root Mean Square Error (RMSE) of UAV-CC, ML, DL, and
GBALO decreases as the sample size increases. GBALO is consistently the one with the
minimum RMSE, indicating that it is the most accurate. DL exhibits a gradually improving
performance, whereas UAV-CC and ML yield more inconsistent and higher error values, which
demonstrates lower stability and a lack of generalization performance.

d) Convergence Speed

Convergence speed refers to the number of iterations or total time an optimization
algorithm takes to reach an optimal solution. This measure is crucial for metaheuristic
algorithms like GBALO; faster convergence indicates more efficient resource use, evaluated
using equation 3. In agricultural modeling, it leads to quicker model training and deployment,
which is vital in resource-limited settings. Poor convergence results in excessive iterations and
inefficient resource utilization. Evaluating convergence speed helps us understand the
algorithm's balance between exploration and exploitation in tasks like feature selection, yield
estimation, or growth stage modeling.

—s—UAV-CC
—— M L
=—d—DL
—v—GBALO

Convergence Speed

Figure 5: Convergence Speed

Figure 5 illustrates the speed of convergence as the sample size increases for UAV-CC,
ML, DL, and GBALO. GBALO always shows the minimum number of iterations (best
convergence), implying that it is more efficient in optimization. Whereas DL is constant, UAV-
CC and ML converge at a slower rate. The fact that GBALO converges faster suggests that it
can learn well with high-dimensional agricultural data.

e) Feature Selection Ratio

Table 2 shows that the FSR confirms GBALO's effectiveness in terms of
dimensionality reduction, as it retained only 9 of the 30 features (FSR = 0.30). In contrast, the
various UAV-CC, ML, and DL approaches all achieved higher ratios, as validated using
Equation 4. In other words, GBALO is more effective in identifying relevant inputs and
reducing complexity, while increasing the model's performance with fewer but more significant
features.

Table 2: Feature Selection Ratio
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Sample UAV-CC ML DL GBALO

100 0.68 0.55 0.48 0.32
200 0.67 0.53 0.47 0.31
300 0.66 0.52 0.46 0.30
400 0.65 0.51 0.45 0.29

Table 2 shows that the FSR confirms GBALO's effectiveness in terms of
dimensionality reduction, as it retained only 9 of the 30 features (FSR = 0.30). In contrast, the
various UAV-CC, ML, and DL approaches all achieved higher ratios, as validated using
Equation 4. In other words, GBALO is more effective in identifying relevant inputs and
reducing complexity, while increasing the model's performance with fewer but more significant
features.

f) F1-Score

The Fl-score is a key performance measure for classification tasks, representing the
harmonic mean of precision and recall. It evaluates a model's ability to identify true positives
while minimizing false negatives and false positives. Precision indicates the accuracy of
predicted positives, while recall reflects the correct labeling of true positives. The F1-score is
particularly vital in imbalanced datasets, such as those in agriculture, where minority class
instances, like rare plant diseases, are often underrepresented. A balanced F1-score indicates a
model that accurately identifies meaningful patterns without overly favoring one class, as
shown in Table 3.

Table 3: F1-Score
Sample UAV-CC ML DL GBALO

100 0.82 0.78 0.84 0.90
200 0.83 0.79 0.85 091
300 0.84 0.80 0.86 0.92
400 0.85 0.81 0.87 0.93

g) Computational Complexity (Time in seconds)

Table 4 presents a comparative analysis of computational complexity, indicating that
GBALO achieves the best overall execution time among the four approaches (10.4 seconds),
followed by UAV-CC, ML, and DL, as validated using Equation 6. GBALO is highly efficient
due to its quick training phase and even quicker testing phase, making it suitable for real-time
agricultural contexts, where speed and optimal resource utilization are essential in determining
potential courses of action.

Table 4: Computational Complexity
Sample UAV-CC ML DL GBALO
100 18.5 12.5 29.0 10.7
200 18.3 12.3 287 10.5
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300 18.2 12.1 284 103
400 18.1 12.0 282 10.1

The findings reinforce the demonstrated supremacy of GBALO with the lowest
RMSE, highest F1-score, fast convergence, and the most efficient feature selection. It also has
the lowest computational time of all models. These results demonstrate GBALO's ability to
accurately predict crop yield at a scalable level, efficiently, and with minimal resources,
promoting sustainable and smart agriculture.

Conclusion

A novel GBALO framework was established for discovering crop growth patterns and
predicting yields, with a focus on paddy-growing situations and constraints. GBALO skilfully
combines the exploratory power of Ant Lion Optimization with the local refinement ability of
gradient descent, performing feature selection and hyperparameter tuning -efficiently.
Experimental outcomes showed that GBALO exhibited higher accuracy, faster convergence,
and lower computational complexity than traditional UAV-CC, ML, and DL models. Revealing
the key agronomic patterns, GBALO also allowed us to demonstrate the utility of data for
evidence-based decisions in agricultural planning. In the future, the GBALO framework will
be applied to multi-crop datasets across multiple agro-climatic zones to increase
generalizability. Additionally, incorporating satellite data, sensor data, and time-series crop
monitoring can enhance model predictions. Additionally, implementing explainable Al
approaches will further support the interpretation of model output, providing transparent
decision-making support for farmers, agronomists, and policymakers in promoting innovative
and sustainable agricultural practices.
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