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AB S T RACT  

 

Crop growth prediction plays a crucial role in precision agriculture, where accurate insights 

into crop behavior can significantly enhance yield and resource utilization. This paper presents 

a novel approach for pattern discovery in crop growth data using a Gradient-Based Ant Lion 

Optimization (GBALO) model. Traditional methods often struggle with high-dimensional 

agricultural datasets and lack the adaptability to select optimal features for prediction, resulting 

in poor model performance and low prediction accuracy. To overcome these challenges, the 

proposed GBALO framework integrates gradient-based learning into the Ant Lion 

Optimization algorithm for efficient feature selection and model parameter tuning. This hybrid 

model is further combined with predictive modeling techniques, such as Random Forest, to 

build an accurate and interpretable crop growth prediction system. The proposed method is 

applied to real-world paddy cultivation data, enabling effective identification of key factors 

influencing growth and yield. It not only enhances predictive accuracy but also aids farmers 

and researchers in making informed decisions based on discovered patterns. Experimental 

results demonstrate that the GBALO-based model outperforms existing approaches in terms of 

accuracy, feature relevance, and computation time, thus establishing a robust framework for 

intelligent agricultural analytics. 

 

Keywords: Crop Growth Prediction, Ant Lion Optimization, Feature Selection, Gradient-Based 
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1. Introduction 
Precision agriculture is a burgeoning form of sustainable agriculture that is now in 

vogue with the advent of data-driven methodologies and techniques to increase crop 

production, resource use, and to improve environmental performance [1]. Crop growth patterns 

and analysis are integral in underpinning a plant's expected behaviors, identifying factors that 

affect those behaviors, and informing legislative agronomic decision treatment when utilizing 

precision agriculture methods. Crop growth data is difficult to analyze as resources are high-

dimensional and data are stochastic with temporal and spatial variation [2]. These factors create 

complex and nonlinear interactions between parameters such as soil mix, temperature, 

humidity, rainfall, pest activity, and fertilizer use. While challenging, computational 

intelligence techniques have been successfully implemented within large-scale agriculture data 
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[3]. These approaches differ from standard general approaches, such as prediction and machine 

learning inputs. 

While computational intelligence techniques are rising in their exploration and could 

provide a better understanding of larger patterns, as well as predictive models of higher-

dimensional parameters or data, their application in agriculture has been limited. A related 

advancement in precision agriculture subject is metaheuristic optimization [4]. Metaheuristic 

optimization takes advantage of natural processes and techniques to search for patterns and 

explore solution domains in possibly multi-dimensional spaces, particularly within agriculture 

and crop growth. More specifically, the ALO algorithm appears to be the metaheuristic 

optimizer most capable of identifying and solving challenging problems [5]. This implies 

effective dynamic exploration-exploitation improvements, and robustness while processing 

multimodal landscapes [6]. 

The ALO algorithm originated from the hunting behavior of antlions in nature, whose 

hunting strategy is based upon trapping ants in sand pits and using their mobility to optimize 

their search. The ALO algorithm, with its natural model for population-based exploration and 

exploitation aspects, provides a good balance [7]. However, the convergence rate and accuracy 

of ALO can fall short on more complex tasks, such as crop growth prediction with noisy, 

redundant features; therefore, it would likely be challenged by high-dimensional crop growth 

prediction tasks. To improve upon the performance of standard ALO, this research proposes 

GBALO, which builds upon the ALO framework while incorporating principles from gradient 

descent learning. The gradient component can direct the search to the steepest descent in the 

fitness landscape, thereby improving convergence rates while reducing the risk of local optima.  

The goal of GBALO in this paper [8] is: feature selection and optimization of model 

hyperparameters. In agricultural predictive modeling, feature selection is crucial because 

irrelevant and redundant variables can diminish the performance and validity of the model. The 

GBALO will dynamically select optimal subsets of features that are most critical to crop growth 

prediction. After selections, the model hyperparameters of machine learning algorithms will be 

optimized by GBALO. This integrated framework was applied to a real-world dataset on paddy 

cultivation, which contained both time-series and spatial data on indicators of crop growth [9]. 

The paper aims to identify latent patterns and relationships that affect paddy yields in different 

environmental and management contexts. The GBALO-based framework outperformed 

optimization methods and baselines of various supervised learning algorithms by exhibiting 

better prediction accuracy, quicker convergence, and more interpretable results. The different 

results of this paper not only contribute to the field of agricultural informatics but also provide 

a foundation for developing intelligent decision-support systems for farmers and agronomists 

[10]. This paper presents a practical data mining and optimization approach that enhances 

planning, resource distribution, and policy-making related to agriculture.  

Problem Statement 

High-dimensional, nonlinear, and noisy crop growth data hinder the discovery of 

accurate patterns and yield prediction; existing models lack efficiency in feature selection and 

optimization, thereby limiting their effectiveness in precision agriculture. 

The main contribution of this paper is: 

  GBALO, an improved metaheuristic algorithm that combines gradient descent with Ant 

Lion Optimization to achieve faster convergence and better accuracy in high-dimensional 

crop growth modeling tasks. 
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 A novel framework is developed using GBALO for simultaneous feature selection and 

model tuning, improving both predictive performance and computational efficiency in 

agricultural data analysis. 

 The proposed method is applied to real paddy cultivation datasets, effectively discovering 

key growth patterns and enhancing yield prediction accuracy under varying environmental 

and agronomic conditions. 

 

 

A summary of the research is provided below. In Section 2, literature review and study 

techniques are thoroughly examined. The GBALO is detailed in Section 3. The results and 

discussion are covered in Section 4. Part 5 explores the main conclusion and Future work. 

2.  Literature Review 
Recent advancements in precision farming have leveraged machine learning (ML), 

deep learning (DL), and UAV-based sensing to enhance crop monitoring and yield forecasting. 

Current studies conclude that the correct identification of the disease, distinguishing weeds, and 

approximating the amount of chlorophyll need to be achieved through automated methods. 

Despite these limitations, the speed of convergence, feature selection, and generalization are 

still constrained. This review discusses some of the options, their strengths in addressing 

challenges, and how they can be encouraged to create a stronger one, such as the GBALO. 

Qiao et al. [11] presented in their paper that precision agriculture management relies 

on accurate estimates of chlorophyll content to track the growth status and photosynthetic 

capability of maize canopies. Due to issues with soil background inhibition and the instability 

of estimates in the face of dynamic changes in plant biomass, the predicted field chlorophyll 

content using a vegetation index is never without its challenges. Unmanned Aerial Vehicle-

based Chlorophyll Content (UAV-CC) estimation was conducted by evaluating VI responses 

under different crop coverages. To investigate the variations in responsiveness and resilience 

for chlorophyll estimation, VIs were analyzed under various crop covering situations. 

Elbasi et al. [12] have revolutionized data processing and decision-making, and 

Machine Learning (ML) applications are significantly influencing economies worldwide. In 

light of the worldwide food shortage, agriculture is one sector that stands to lose significant 

ground. In this paper, look at the pros and cons of using machine learning algorithms in 

contemporary farming. The primary goal of these algorithms is to make informed decisions 

about when and how much to plant, irrigate, and harvest crops, with the secondary goal of 

optimizing crop yield and minimizing waste. 

Gallo et al. [13] demonstrated that spreading agrochemicals, which may have harmful 

effects on the environment, is a standard practice to sustain agricultural yields and combat 

weeds, which pose a significant threat to agriculture. Intelligent application-supporting methods 

are required. For this reason, site-specific weed control relies heavily on identification and 

mapping. The spatial explicit dimensions of imaging, along with the high resolution and 

flexibility of data capture, make Unmanned Aerial Vehicle (UAV) data streams ideal for weed 

identification. 

Attri et al. [14] demonstrated that Deep learning (DL) has shown significant potential 

in the agricultural industry as a powerful tool for data analysis and image processing. In this 

paper, all topics pertain to DL and its agrarian applications; the topics covered are smart 

farming, weed and pest detection, crop yield prediction, plant stress detection, and disease 
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detection. Managing water, analyzing seeds, and analyzing soil are all parts of smart farming. 

The paper emphasizes that deep learning has the potential to enhance economic development 

and agricultural productivity. 

Liu et al. [15] suggested that Pests and illnesses that affect plants significantly impact 

their productivity and quality. Digital image processing facilitates the detection of pests and 

diseases that affect plants. When compared to more conventional approaches, deep learning's 

recent achievements in Digital Image Processing (DIP) are light years ahead of the pack. A 

significant focus of the paper has been on developing effective methods for identifying pests 

and diseases in plants using deep learning technologies. The term "plant diseases and pests 

detection problem" is defined and compared to more conventional approaches in this paper. 

Shoaib et al. [16] demonstrated that the world's food supply relies heavily on plants. 

Plant diseases cause substantial output losses due to various environmental conditions. 

Identifying plant diseases by hand is a laborious and clumsy procedure. It is not always an 

accurate method for detecting and stopping the spread of plant diseases. One way to tackle these 

difficulties is by using modern technologies like DL and ML. These will enable the early 

detection of plant diseases. 

Latif et al. [17]  provided sustenance for more than half of the world's population. Rice 

is often regarded as one of the most important plants on the planet. Diseases may impact the 

amount and quality of rice, just as they do other plants. It may occasionally result in a decrease 

in harvest yield. Farmers need to be well-versed in various illnesses and able to recognize them 

physically, which can help detect them early and impact yield. Despite this, farmers still cannot 

possibly conduct a daily inspection of the enormous farmlands. 

Chen et al. [18] identified several factors more consequential to agricultural output than 

weeds. The ecological damage and waste caused by the widespread use of full-coverage 

chemical pesticides in farm areas are becoming increasingly apparent. Accurately 

differentiating crops from weeds and achieving precision spraying of only weeds are becoming 

increasingly critical as agricultural productivity continues to improve. This paper examines two 

approaches to addressing weed identification issues, utilizing both deep learning-based 

algorithms and conventional image processing methods. 

Kasinathan et al. [19] demonstrated a significant opportunity for the agricultural 

industry to increase both the supply of healthy food and its demand for healthy food. Farmers 

face a challenging task in identifying agrarian pests, as they can severely damage and reduce 

the quality of many crops. Skilled taxonomists are required for traditional insect identification, 

as it necessitates a high degree of accuracy when identifying insects solely by their physical 

characteristics. 

Bharadiya et al. [20] suggest that timely decisions regarding food policy, market 

pricing, import/export regulations, and permissible warehousing may be aided by crop output 

estimates. Natural disasters, such as floods and droughts, can have devastating socioeconomic 

impacts, but there are ways to mitigate these consequences and even coordinate food aid for 

those in need. A potential application of deep learning in agricultural production prediction is 

the ability to enable the model to autonomously extract characteristics and learn from existing 

datasets.  

3. A Model for the GBALO Model.  

This paper proposes a new framework, GBALO, that integrates crop growth modeling 

and yield prediction. GBALO is a hybrid algorithm that combines gradient descent with the ant 

lion optimizer, thereby enhancing the feature selection and hyperparameter tuning processes. 
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When applied to real-world paddy datasets, the models and predictors indicated improved 

predictions, decreased computational cost, and supported precision agriculture. 

 

Figure 1: GBALO Algorithm and Optimization Framework 

Figure 1 illustrates a comprehensive pipeline for crop growth prediction utilizing 

GBALO. The process begins with raw crop growth data. The data is pre-processed to account 

for any noise and to normalize the features. By employing GBALO, an advanced metaheuristic 

that combines the ant lion optimization technique with gradient descent, the algorithm performs 

feature selection concurrently with hyperparameter tuning. This enables GBALO to enhance 

the readability of input variables and improve the efficiency of the learning algorithm. A tuned 

model will be trained, resulting in improved accuracy and faster convergence. This pipeline 

will enhance the efficiency and accuracy of agro-predictive research while decreasing the 

computational expense. 

Figure 2:  Real-World Application to Paddy Yield Prediction 

Figure 2 illustrates the application of a GBALO-based framework to real-world paddy 

production data, including soil properties, climate, and fertilizer inputs, utilizing the GBALO 

algorithm for intelligent feature selection and model tuning to enhance the predictive 

performance of machine learning models. In this optimized framework, important patterns 

about key growth (as well as key agronomic) factors that influence crop behavior were 

investigated. Once developed, the result is a highly accurate yield prediction system providing 

valuable insights and decision support to various stakeholders (or managers) involved in paddy 
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production. Thus, the yield prediction system improves resource planning and provides support 

for a data-driven agricultural approach. 

Algorithm 1: GBALO-Based Paddy Yield Prediction Using Intelligent Feature 

Selection and Evaluation 

𝑆𝑡𝑒𝑝 1: 𝐼𝑛𝑝𝑢𝑡 
𝐼𝑛𝑝𝑢𝑡: 𝑆𝑜𝑖𝑙 𝑑𝑎𝑡𝑎, 𝑐𝑙𝑖𝑚𝑎𝑡𝑒 𝑑𝑎𝑡𝑎, 𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟 𝑖𝑛𝑝𝑢𝑡, 𝑎𝑛𝑑 𝑐𝑟𝑜𝑝 𝑦𝑖𝑒𝑙𝑑 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 

 
𝑆𝑡𝑒𝑝 2: 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 
𝐶𝑙𝑒𝑎𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑎𝑙𝑙 𝑖𝑛𝑝𝑢𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 
𝑆𝑝𝑙𝑖𝑡 𝑑𝑎𝑡𝑎 𝑖𝑛𝑡𝑜 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑎𝑛𝑑 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 

 
𝑆𝑡𝑒𝑝 3: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝐺𝐵𝐴𝐿𝑂 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 
𝑆𝑒𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑔𝑒𝑛𝑡𝑠 𝑎𝑛𝑑 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 
𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑐𝑟𝑒𝑎𝑡𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑎𝑔𝑒𝑛𝑡 

 
𝑆𝑡𝑒𝑝 4: 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑢𝑠𝑖𝑛𝑔 𝐺𝐵𝐴𝐿𝑂 
𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑎𝑔𝑒𝑛𝑡: 
𝑇𝑟𝑎𝑖𝑛 𝑚𝑜𝑑𝑒𝑙 𝑢𝑠𝑖𝑛𝑔 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 
𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 (𝑓𝑖𝑡𝑛𝑒𝑠𝑠) 

 
𝐼𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 𝑖𝑠 𝑙𝑜𝑤𝑒𝑟 𝑡ℎ𝑎𝑛 𝑏𝑒𝑠𝑡 𝑠𝑜 𝑓𝑎𝑟: 
𝑆𝑎𝑣𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑎𝑠 𝑏𝑒𝑠𝑡 
𝐸𝑙𝑠𝑒: 
𝑈𝑝𝑑𝑎𝑡𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑢𝑠𝑖𝑛𝑔 𝐺𝐵𝐴𝐿𝑂 𝑟𝑢𝑙𝑒𝑠 (𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 +  𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑖𝑛𝑓𝑜) 
𝐸𝑛𝑑 𝐼𝑓 
𝐸𝑛𝑑 𝐹𝑜𝑟 

 
𝑆𝑡𝑒𝑝 5: 𝑇𝑟𝑎𝑖𝑛 𝐹𝑖𝑛𝑎𝑙 𝑀𝑜𝑑𝑒𝑙 
𝑈𝑠𝑒 𝑏𝑒𝑠𝑡 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 
𝑇𝑟𝑎𝑖𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑚𝑜𝑑𝑒𝑙 (𝑙𝑖𝑘𝑒 𝑅𝑎𝑛𝑑𝑜𝑚 𝐹𝑜𝑟𝑒𝑠𝑡 𝑜𝑟 𝑋𝐺𝐵𝑜𝑜𝑠𝑡) 

 
𝑆𝑡𝑒𝑝 6: 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑀𝑜𝑑𝑒𝑙 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐵𝐷𝐷) 
𝑆𝑒𝑡 𝐵𝐷𝐷 =  0 
𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒: 
𝐼𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =  𝑎𝑐𝑡𝑢𝑎𝑙: 
𝑑𝑒𝑙𝑡𝑎 =  1 
𝐸𝑙𝑠𝑒: 
𝑑𝑒𝑙𝑡𝑎 =  0 
𝐸𝑛𝑑 𝐼𝑓 
𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 =  𝑚𝑜𝑑𝑒𝑙 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑓𝑜𝑟 𝑡ℎ𝑖𝑠 𝑠𝑎𝑚𝑝𝑙𝑒 
𝐵𝐷𝐷 +=  𝑑𝑒𝑙𝑡𝑎 / (1 +  𝑒𝑥𝑝(−𝑎𝑏𝑠(𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡))) 
𝐸𝑛𝑑 𝐹𝑜𝑟 
𝐵𝐷𝐷 =  𝐵𝐷𝐷 / 𝑡𝑜𝑡𝑎𝑙_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

 
𝑅𝑀𝑆𝐸 (𝑆𝑁𝑇𝐷) 
𝑆𝑒𝑡 𝑆𝑁𝑇𝐷 =  0 
𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑎𝑚𝑝𝑙𝑒: 
𝑒𝑟𝑟𝑜𝑟 =  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 −  𝑎𝑐𝑡𝑢𝑎𝑙 
𝑝𝑒𝑛𝑎𝑙𝑡𝑦 =  𝑠𝑢𝑚 𝑜𝑓 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 
𝑆𝑁𝑇𝐷 +=  𝑒𝑟𝑟𝑜𝑟 +  (𝑙𝑎𝑚𝑏𝑑𝑎 ∗  𝑝𝑒𝑛𝑎𝑙𝑡𝑦) 
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𝐸𝑛𝑑 𝐹𝑜𝑟 
𝑆𝑁𝑇𝐷 =  𝑠𝑞𝑟𝑡(𝑆𝑁𝑇𝐷 / 𝑡𝑜𝑡𝑎𝑙_𝑠𝑎𝑚𝑝𝑙𝑒𝑠) 

 
𝑆𝑡𝑒𝑝 7: 𝐸𝑥𝑡𝑟𝑎 𝐶ℎ𝑒𝑐𝑘𝑠 
𝐼𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙: 
𝑃𝑟𝑖𝑛𝑡("𝐺𝑜𝑜𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛") 
𝐸𝑙𝑠𝑒: 
𝑃𝑟𝑖𝑛𝑡("𝑇𝑜𝑜 𝑚𝑎𝑛𝑦 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑") 
𝐸𝑛𝑑 𝐼𝑓 

 
𝐼𝑓 𝑚𝑜𝑑𝑒𝑙 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠 𝑓𝑎𝑠𝑡: 
𝑃𝑟𝑖𝑛𝑡("𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑚𝑜𝑑𝑒𝑙") 
𝐸𝑙𝑠𝑒: 
𝑃𝑟𝑖𝑛𝑡("𝑆𝑙𝑜𝑤 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒") 
𝐸𝑛𝑑 𝐼𝑓 

 
𝑆𝑡𝑒𝑝 8: 𝑂𝑢𝑡𝑝𝑢𝑡 
𝑆ℎ𝑜𝑤 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑦𝑖𝑒𝑙𝑑𝑠, 𝐵𝐷𝐷 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑆𝑁𝑇𝐷 𝑒𝑟𝑟𝑜𝑟, 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 

The GBALO-based paddy yield prediction system uses soil, climate, and fertilizer data 

to predict crop yield is explained in algorithm 1. It begins with data cleaning and normalization, 

followed by intelligent feature selection using the GBALO algorithm, which combines 

optimization and gradient-based learning. If a feature subset improves prediction accuracy, it is 

kept; otherwise, it’s updated. A machine learning model is trained on the selected features. If 

selected features are few and convergence is fast, the model is considered efficient. The system 

outputs predictions, accuracy, error, and selected key features. 

Prior research has employed machine learning and metaheuristic algorithms for 

agricultural forecasting, including Ant Lion Optimization; however, these approaches have 

tended to focus less on convergence speed and precise feature selection or inclusion. There are 

more recent methods specifically employing both optimization and gradient information, which 

appear to hold promise. GBALO builds on these ideas and further enhances overall efficiency 

and predictive value.  

a) Evaluation Metrics 

To thoroughly assess the GBALO-based crop growth prediction model, a 
comprehensive set of evaluation measures is applied, including accuracy, RMSE, convergence 

speed, feature selection ratio, F1-score, and computational complexity. These measures 

quantify the predictive consistency of the model, the optimization characteristics of the model, 
the feature selection aspect of the model, the classification accuracy of the model, and the 

computational cost in the high-dimensional agricultural data. 

The accuracy 𝐵𝐷𝐷 is calculated using equation 1 as follows: 

𝐵𝐷𝐷 =
1

𝑂
∗ ∑ (

∀(𝑧 = 𝑦𝑗)

1 + 𝑓−|𝜕𝑡𝑗∗𝑀(𝑅𝑡 ,𝑀𝑞)|
)  (1)

𝑂

𝑗=1

 

This equation calculates accuracy with a gradient-weighted correction, applying the derivative 

of loss. The sigmoid serves as a confidence decay for incorrectly classified samples.  

Total number of samples 𝑂, and the actual label of the sample ∀(𝑧 = 𝑦𝑗), along with 

the predicted label of the sample 𝑅𝑡. and the Ronecker delta function 𝜕𝑡𝑗 ∗ 𝑀, along with the 

gradient of loss 𝑓 to parameters.  
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The error of the root mean square 𝑆𝑁𝑇𝐷 was evaluated using equation 2 

𝑆𝑁𝑇𝐷 = √
1

𝑃
∗ ∑(𝛼𝑗 − 𝐵𝑧) + ∀ × ∑|∝𝑘|

𝐺

𝑘=1

𝑂

𝑗=1

  (2) 

The RMSE is penalized 𝑃 with a regularization term based on Lasso-type norms 𝛼𝑗 −

𝐵𝑧 to account for overfitting ∀ in high-dimensional agricultural data |∝𝑘|. 

Number of observations, true and predicted values 𝐺, regularization coefficient 𝑗, 

model parameter 𝑂, and the total number of selected features, where the regularization norm 

exponent. 

The convergence speed 𝐷𝑇 is calculated using equation 3 

𝐷𝑇 =
1

𝑆
∗ ∑∗ |

𝐺𝑢 − 𝐺𝑢−1

𝐺𝑢−1 + 𝜕
|   (3)

𝑈

𝑢=1

 

This measure summarizes 𝑆 the average relative fitness improvement 𝑈 over iterations in 

GBALO optimization. 

Total number of iterations 𝐺𝑢, fitness value at iteration 𝜕, and a small constant to avoid 

division by zero.  

The ratio of feature selection 𝐺𝑇𝑆 is calculated using equation 4 

𝐺𝑇𝑆 =
1

𝑁 
∗ ∑(

|𝑔𝑛
𝑠𝑒𝑙|

|𝑔𝑛
𝑡𝑜𝑡𝑎𝑙|

∗ 𝑌[(𝑔𝑛
𝑠𝑒𝑙))

 𝑁

𝑛=1

∀> (4) 

The FSR incorporates the sparsity of selected features 𝑁 and a relevance threshold 

𝑔
𝑛
𝑠𝑒𝑙  to ensure that only meaningful features are maintained. 

Number of cross-validation folds or trials 𝑔
𝑛
𝑡𝑜𝑡𝑎𝑙, vector of selected features in trial ∀, 

total feature vector in trial 𝑔
𝑛
𝑠𝑒𝑙 , norm (counts non-zero entries), feature importance scoring 

function, and minimum relevance threshold.  

The F1-score value was evaluated using equation 5 

𝑓
1

= 2 ∗  

(
𝜕𝑛

𝑉𝑗′ − 𝑛𝑞
) ∗ (1 − ∀𝑎′ + 𝑓)

((
𝜕𝑛

𝑉𝑗′ − 𝑛𝑞
))

 (5) 

This modified F1-score applies smoothing (𝜕𝑛) to avoid numerical instability 𝑉𝑗′ during 

division in imbalanced crop datasets. 

Here, true positives ∀𝑎′, false positives 𝑛𝑞, false negatives 𝑓, and a small constant to prevent 

division by zero.  

The computational complexity 𝐷𝐷 is calculated using equation 6 

𝐷𝐷 = 𝑝(ℎ. 𝑀. 𝑞. 𝑙𝑜𝑔(𝐺) + 𝑂 ∗ 𝐸2 + 𝑞. 𝑈. 𝐺)  (6) 

The overall cost combines optimization (GBALO), RF training cost 𝑝, and gradient-based 

parameter adaptation for predicting crop growth. 
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Here, the number of antlions (population size) ℎ. 𝑀. 𝑞, the number of data points 𝑙𝑜𝑔(𝐺), and 

the number of features, the depth of random forest trees 𝑞. 𝑈. 𝐺, the cost of gradient computation 

per feature 𝐸2, and the number of GBALO iterations. 

The evaluation indicates that the GBALO model exhibits the following advantages: 

increased accuracy and decreased RMSE, fast-converging behavior, effective feature subset 

selection, robust F1 scores in the presence of imbalanced classes, and computational feasibility. 

These evaluations collectively demonstrate the model’s ability to identify valuable insights for 

enhancing yield prediction and contributing to intelligent agricultural decision-making. 

4. Results and Discussion 

      This section presents a comprehensive analysis of the GBALO framework's performance in 

comparison to UAV-CC, ML, and DL models, using the Rice Crop Yield Prediction dataset as an 

example application. Performance measures (accuracy, RMSE, convergence rate, F1-score, feature 

selection ratio, and computation time) demonstrated the effectiveness, efficiency, and suitability of 

the GBALO framework for real-world use. 

a) Dataset Description 

The Rice Crop Yield Prediction dataset from Kaggle supports machine learning models 

to estimate rice or wheat yield per acre in India. It includes features like soil quality, rainfall, 

and fertilizer use. This dataset helps optimize farming decisions, improve food security, and 

promote sustainable agriculture in the face of climate challenges [21]. 

Table 1: Parameterized table 

Feature Name Description 

Clone size Average size of blueberry clones (m²) 

Honeybee Honeybee density (bees/m²/min) 

Bumbles Bumblebee density (bees/m²/min) 

Andrena Andrena bee density (bees/m²/min) 

Osmia Osmia bee density (bees/m²/min) 

MaxOfUpperTRange Max upper daily temperature (°C) 

MinOfUpperTRange Min upper daily temperature (°C) 

AverageOfUpperTRange Avg upper daily temperature (°C) 

MaxOfLowerTRange Max lower daily temperature (°C) 

MinOfLowerTRange Minimum daily temperature (°C) 

AverageOfLowerTRange Avg lower daily temperature (°C) 

RainingDays Number of rainy days during bloom 

season 

AverageRainingDays Average rainy days during bloom season 

Fruit set Measure of fruit set timing 

Fruitmass Mass of fruit produced 
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Seeds Number of seeds per fruit 

Yield Final crop yield (target variable) 

 

b) Accuracy (%) 

Accuracy is a crucial metric that reflects the ratio of correct classwise predictions to 

total instances. For systems predicting crop yield or classifying growth, high accuracy indicates 

reliable real-world agricultural representation, as shown in equation 1. This is vital for assessing 

growth stages, disease characteristics, or categorical performance. While accuracy measures 

overall effectiveness, it's important to also consider other metrics like precision, recall, and F1 

score to avoid overly optimistic results, particularly in cases of imbalanced classes or varying 

environmental conditions. 

Figure 3: Accuracy  

Figure 3 illustrates the accuracy of four models, UAV-CC, ML, DL, and GBALO, as 

the sample sizes increase. GBALO consistently performs better, achieving a rate of almost 94%. 

DL demonstrates continuous growth, while ML and UAV-CC maintain the same level or 

experience a slight decrease. It points to the strength and scalability of GBALO in terms of 

yield prediction. 

c) Root Mean Square Error 

RMSE measures the average squared differences between actual and predicted values, 

providing insight into prediction accuracy in regression tasks like crop yield estimation (in 

kilograms per acre). Lower RMSE values indicate better model fit, while its sensitivity to large 

errors makes it useful for minimizing significant prediction inaccuracies. RMSE is particularly 
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relevant for continuous outcomes in agriculture, such as yield prediction, where precision 

farming can assess crop performance under varying conditions. 

Figure 4: Root Mean Square Error 

Figure 4 shows that the Root Mean Square Error (RMSE) of UAV-CC, ML, DL, and 

GBALO decreases as the sample size increases. GBALO is consistently the one with the 

minimum RMSE, indicating that it is the most accurate. DL exhibits a gradually improving 

performance, whereas UAV-CC and ML yield more inconsistent and higher error values, which 

demonstrates lower stability and a lack of generalization performance. 

d) Convergence Speed 

Convergence speed refers to the number of iterations or total time an optimization 

algorithm takes to reach an optimal solution. This measure is crucial for metaheuristic 

algorithms like GBALO; faster convergence indicates more efficient resource use, evaluated 

using equation 3. In agricultural modeling, it leads to quicker model training and deployment, 

which is vital in resource-limited settings. Poor convergence results in excessive iterations and 

inefficient resource utilization. Evaluating convergence speed helps us understand the 

algorithm's balance between exploration and exploitation in tasks like feature selection, yield 

estimation, or growth stage modeling. 

Figure 5: Convergence Speed 

Figure 5 illustrates the speed of convergence as the sample size increases for UAV-CC, 

ML, DL, and GBALO. GBALO always shows the minimum number of iterations (best 

convergence), implying that it is more efficient in optimization. Whereas DL is constant, UAV-

CC and ML converge at a slower rate. The fact that GBALO converges faster suggests that it 

can learn well with high-dimensional agricultural data. 

e) Feature Selection Ratio 

Table 2 shows that the FSR confirms GBALO's effectiveness in terms of 

dimensionality reduction, as it retained only 9 of the 30 features (FSR = 0.30). In contrast, the 

various UAV-CC, ML, and DL approaches all achieved higher ratios, as validated using 

Equation 4. In other words, GBALO is more effective in identifying relevant inputs and 

reducing complexity, while increasing the model's performance with fewer but more significant 

features. 

Table 2: Feature Selection Ratio 
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Sample UAV-CC ML DL GBALO 

100 0.68 0.55 0.48 0.32 

200 0.67 0.53 0.47 0.31 

300 0.66 0.52 0.46 0.30 

400 0.65 0.51 0.45 0.29 

Table 2 shows that the FSR confirms GBALO's effectiveness in terms of 

dimensionality reduction, as it retained only 9 of the 30 features (FSR = 0.30). In contrast, the 

various UAV-CC, ML, and DL approaches all achieved higher ratios, as validated using 

Equation 4. In other words, GBALO is more effective in identifying relevant inputs and 

reducing complexity, while increasing the model's performance with fewer but more significant 

features. 

f) F1-Score  

The F1-score is a key performance measure for classification tasks, representing the 

harmonic mean of precision and recall. It evaluates a model's ability to identify true positives 

while minimizing false negatives and false positives. Precision indicates the accuracy of 

predicted positives, while recall reflects the correct labeling of true positives. The F1-score is 

particularly vital in imbalanced datasets, such as those in agriculture, where minority class 

instances, like rare plant diseases, are often underrepresented. A balanced F1-score indicates a 

model that accurately identifies meaningful patterns without overly favoring one class, as 

shown in Table 3. 

Table 3: F1-Score 

Sample UAV-CC ML DL GBALO 

100 0.82 0.78 0.84 0.90 

200 0.83 0.79 0.85 0.91 

300 0.84 0.80 0.86 0.92 

400 0.85 0.81 0.87 0.93 

 

g) Computational Complexity (Time in seconds) 

Table 4 presents a comparative analysis of computational complexity, indicating that 

GBALO achieves the best overall execution time among the four approaches (10.4 seconds), 

followed by UAV-CC, ML, and DL, as validated using Equation 6. GBALO is highly efficient 

due to its quick training phase and even quicker testing phase, making it suitable for real-time 

agricultural contexts, where speed and optimal resource utilization are essential in determining 

potential courses of action.  

Table 4: Computational Complexity 

Sample UAV-CC ML DL GBALO 

100 18.5 12.5 29.0 10.7 

200 18.3 12.3 28.7 10.5 
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300 18.2 12.1 28.4 10.3 

400 18.1 12.0 28.2 10.1 

 The findings reinforce the demonstrated supremacy of GBALO with the lowest 

RMSE, highest F1-score, fast convergence, and the most efficient feature selection. It also has 

the lowest computational time of all models. These results demonstrate GBALO's ability to 

accurately predict crop yield at a scalable level, efficiently, and with minimal resources, 

promoting sustainable and smart agriculture. 

5. Conclusion 

A novel GBALO framework was established for discovering crop growth patterns and 

predicting yields, with a focus on paddy-growing situations and constraints. GBALO skilfully 

combines the exploratory power of Ant Lion Optimization with the local refinement ability of 

gradient descent, performing feature selection and hyperparameter tuning efficiently. 

Experimental outcomes showed that GBALO exhibited higher accuracy, faster convergence, 

and lower computational complexity than traditional UAV-CC, ML, and DL models. Revealing 

the key agronomic patterns, GBALO also allowed us to demonstrate the utility of data for 

evidence-based decisions in agricultural planning.  In the future, the GBALO framework will 

be applied to multi-crop datasets across multiple agro-climatic zones to increase 

generalizability. Additionally, incorporating satellite data, sensor data, and time-series crop 

monitoring can enhance model predictions. Additionally, implementing explainable AI 

approaches will further support the interpretation of model output, providing transparent 

decision-making support for farmers, agronomists, and policymakers in promoting innovative 

and sustainable agricultural practices.  
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