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ABSTRACT

Lung disease pattern detection in X-ray images plays a crucial role in early diagnosis and treatment
planning. This study introduces a novel approach that integrates the African Vulture Optimization
Algorithm (AVOA) with Convolutional Neural Networks (CNN) to enhance detection accuracy
and efficiency. Existing methods often suffer from high false detection rates, poor generalization,
and inadequate feature extraction, especially in complex or overlapping lung pathologies. To
overcome these challenges, the proposed framework employs CNN for deep feature extraction,
while AVOA optimizes network parameters and feature selection, ensuring robust learning and
reduced overfitting. The hybrid model not only improves feature representation but also accelerates
convergence during training. The proposed method is applied to public lung X-ray datasets to
identify patterns indicative of diseases such as tuberculosis, pneumonia, and COVID-19.
Experimental results show that the CNN-AVOA model outperforms conventional deep learning
models, achieving a classification accuracy of 96.8%, with superior precision and recall rates. This
approach demonstrates significant potential in automated medical diagnostics, reducing human
error and improving patient outcomes.

Keywords: Lung Disease Detection, X-ray Imaging, African Vulture Optimization Algorithm, Convolutional
Neural Network, Deep Learning, Medical Image Analysis

1. Introduction

Pneumonia, tuberculosis, and COVID are the most well-known lung diseases that pose
morbidity and mortality across the world. Such a condition must be diagnosed early so that
timely treatment can be offered, and the survival rate of the patients would be improved [1].
This is given that early diagnosis not only costs less in healthcare, but also prevents the
occurrence of severe respiratory complications. Chest X-ray scanning is a cost-effective and
readily available diagnostic tool. In the clinical scenario, it thus becomes a crucial tool for the
initial screening and diagnosis of lung diseases [2].

a. Overview of Convolutional Neural Networks and Their Limitations

CNNs have emerged as the sacrament to the application of deep learning in medical
image analysis. A layered architecture that enables automatic learning of the spatial
arrangements of features in raw input images, which may be beneficial for object detection and
classification. The use of CNNs in detecting lung disease has shown high promise in providing
discriminative features for X-ray scans [3]. CNN models are susceptible to hyperparameter

67
ISSN: 3006-8894



An African Vulture Optimization Algorithm for Lung Disease Pattern Detection in X Ray Images

Khalid Al-Hamadi & Faisal Al-Nuaimi

tuning and may not be generalizable across datasets with varying imaging conditions or disease
distributions. It is essential to enhance the robustness and accuracy of the CNN structure by
integrating a smart optimization mechanism into it [4].

b. Introduction to AVOA and Its Role in Optimization

The AVOA, a population-based metaheuristic, is inspired by the cooperative
scavenging behavior of the African vulture. It has demonstrated its worth in solving complex
optimization problems across various areas, due to a good balance between exploration and
exploitation. AVOA will be used in this paper to train the four hyperparameters of CNN and
evaluate the most significant characteristics [S]. AVOA helps optimize better parameter settings
and feature subsets in CNNs to enhance learning efficiency and minimize overfitting, thereby
improving the model's accuracy. The combination of AVOA with CNN constitutes an
amalgamation framework aimed at overcoming the deficiencies of using customary lung
disorder discovery systems. This paper evaluates its performance on public X-ray databases,
highlighting significant contributions to the machine diagnosis process and clinical decision-
making [6].

c. Problem statement

The current method of detecting lung diseases based on X-ray image analysis may have
shortcomings, including low precision, ineffective feature extraction, and a high frequency of
false positives. A high-quality deep learning system is therefore required to provide reasonable
and consistent clinical assistance.

d. Contribution.

¢ Anovel and unique paradigm of a hybrid network, combining CNN and AVOA, to enhance
pattern recognition of lung diseases in X-ray images.

e CNN -AVOA enhances model performance through parameter optimization of the CNN
and feature selection, discarding the least useful features to minimize instances of false
positives and improve detection accuracy across all forms of lung diseases.

e The suggested CNN-AVOA model exhibits the best classification indicators in the set,
achieving 96.8% accuracy in testing samples, which confirms its effectiveness in real-time,
automatic evaluation of medical images and aiding in diagnosis.

2. Research Methodology
The use of deep learning and nature-inspired optimization algorithms has made
significant progress over the past couple of years in detecting lung diseases based on chest X-
ray images. Numerous studies have explored CNNss, transfer learning, and hybrid optimization
approaches to enhance diagnostic accuracy, minimize false positives, and achieve improved
computational efficiency. This literature review critically examines state-of-the-art methods,

presenting their methodologies, datasets, and evaluation metrics, and discusses their
applicability to the proposed CNN-AVOA model.

This study develops a hybrid deep CNN that combines the Xception and ResNet50V2
models to achieve multi-class X-ray classification, encompassing standard, pneumonia, and
COVID-19. Addressing the class imbalance using training approaches, the model was trained
through 180 COVID-19 samples, and over 11,000 images were used as test data. It achieved an
overall accuracy of 91.4% and 99.5% accuracy in detecting COVID-19. This architecture
enhances feature representation by combining the ensemble of both CNNs by Rahimzadeh et
al [7].
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Khan et al. [8] state that CoroNet is a deep CNN model that detects COVID-19 based
on chest X-rays. It was developed based on the Xception architecture and trained with a curated
collection of COVID-19 images, together with pneumonia images. For a 3-class classification,
it achieved an accuracy of 95%, and in the 4-class scenario, it was 89.6%. CoroNet has a high
recall rate (98.2%) for COVID-19, with sufficient promise for clinical application in resource-
constrained areas with limited access to PCR tests.

The DLHAV algorithm enhances the original African Vulture Optimization Algorithm
by incorporating Dimension Learning Hunting, as proposed by Singh et al. [9], to strike a
balance between exploitation and exploration. It applied to NP-hard problems, such as TSP and
large-scale optimization, and showed a higher convergence, diversity in the crowd, and
resistance to local optimality. This approach optimizes both continuous and discrete domains
and has the promise to be used to adjust parameters in medical imaging.

According to He et al. [10], the Improved African Vulture Optimization Algorithm
(IAVOA) is described as a method for dealing with the dual constraints of flexible job shop
scheduling problems. Among the advances are rule-based initialization of the population,
memorization of elite solutions, and local neighborhood search. The outcome shows that
IAVOA provides significant improvements in makespan and delay over current methods. It is
also suitable for hyperparameter optimization with Al systems, as its enhancements qualify it
for this use case.

This study realizes Quasi-Oppositional Learning (QOL) on AVOA to articulate the
Backpropagation Neural Network weights over wireless sensor networks WSNs by Qaffas [11].
When translated to energy-efficient routing and data fusion, it will minimize unnecessary
energy-wasting transmission and prolong node lifetime. With greater PDR and lower energy
consumption, QAVOA-BPNN demonstrates better results than baseline approaches, providing
insights into how to utilize AVOA to train CNNs efficiently or for feature selection.

Based on a deep learning approach using a pre-trained AlexNet model, the current
study aims to categorize all chest X-ray images into four categories: COVID-19, bacterial
pneumonia, non-COVID viral pneumonia, or normal, as proposed. The model trained on
publicly available data realized a binary classification accuracy of up to 99.6 percent and got
93.4 percent in a four-class scenario. It proves to be more sensitive and specific, which is an
advantage of AlexNet, as it has demonstrated its efficiency in medical image classification with
some fine-tuning, as noted by Ibrahim et al. [12].

CNNs to identify lung diseases, including pneumonia and tuberculosis, by Bharati et
al. [13]. To handle rotated and misaligned chest X-rays, it outperformed both vanilla CNN and
capsule networks, achieving a validation accuracy of 73% on the NIH datasets. It is a hybrid
architecture that enables strong classification of large-scale sets of medical images.

It is a Deep Convolutional Neural Network (DCNN) model using image augmentation
to detect COVID-19, bacterial, and viral pneumonia using radiography images. Based on more
than 16,000 images, it reached a viral pneumonia accuracy of up to 99.4 percent, and it trained
and inferred very quickly. The model offers flexible and affordable diagnostics, particularly
ideal in resource-poor nations, as described by Abdulahi et al. [14].

LungNeXt is a model meant to classify lung sounds on auscultation data. It proposes
RandClipMix, which is used to augment data, and Enhanced Mel-Spectrogram Feature
Extraction to illuminate rates of lung pathologies. Considered on the SPRSound dataset, its
performance score was 0.5699 at the cost of only 3.8 million parameters. Its design is not an
interface to X-rays, but its lightweight and augmentation techniques can indicate a medical
signal that can be classified by Wang et al [15].
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According to Babukarthik et al [16], Genetic Deep Learning Convolutional Neural
Network (GDCNN) utilizes a genetic algorithm to evolve CNN architectures from scratch and
optimize feature extraction for detecting COVID-19 using chest X-rays. After being trained on
more than 5,000 samples, it achieves better results than the pre-trained networks, ResNet and
VGG16, with an accuracy of 98.84%, a sensitivity of 100%, and a specificity of 97%. It
demonstrates the success of hybrid evolutionary algorithms with CNN in feature learning.

3. Proposed Methodology

The overall frame contains a hybrid (combined) deep learning model involving the
application of CNN with the AVOA to improve recognition of the pattern of lung diseases based
on the image of the chest X-rays. The framework is a progressive framework composed of the
following stages: image preprocessing, CNN feature extraction, parameter optimization
through AVOA, and final classification determination. First, the input X-ray images are rescaled
to the same dimension, ensuring the quality of the data is homogenized. These pre-trained
images are processed through a CNN, where deep feature presentations are extracted. Then,
AVOA will be used to adjust the hyperparameters of CNN and the most informative feature
sets. Multi-class classification is then conducted with this optimized configuration, as the
diseases being identified include pneumonia, tuberculosis, and COVID-19. AVOA embedded
in CNN avoids overfitting, enhances accuracy, and improves convergence rates [17].

a. Convolutional Neural Network

CNN has a good capacity to capture spatial hierarchies in the data in the form of
images; hence, this makes it the central feature extractor in the proposed system. The
architecture used in this work consists of three levels of convolutions at higher filter sizes (32,
64, and 128). After each layer, Rectified Linear Unit (ReLU) activation functions and max
pooling are applied, which reduce the dimension while retaining the most significant features.
There is a flattened layer after the convolutional layers that transforms the 2D feature maps to
a 1D vector, which is fed to two fully connected layers. The softmax activation function is
applied in the output layer to determine the probability of every type of disease. The loss
function is a cross-entropy loss function of the categorical type, used to train the model. CNN
is robust but greatly depends on the selection of appropriate hyperparameters, such as the
learning rate, dropout rate, and the number of filters, among others. Unsuitable environments
may lead to overfitting or significant generalization failure, and it is here that AVOA makes a
difference [18].

b. African Vulture Optimization Algorithm (AVOA)

AVOA is an optimization algorithm inspired by the scavenger behavior of the African
vulture, which combines exploration and exploitation through dynamic global and local search
strategies. The exploration phase involves a random search for food parts by vultures; however,
the exploitation phase focuses on enhancing solutions around the best-known configurations.
The algorithm begins with a population of candidate solutions to a CNN hyperparameterization
or feature subset, and iteratively searches using stochastic operators inspired by vulture
behavior. The validation accuracy of the defined CNN model rates the fitness of every solution.
AVOA optimizes parameters such as learning rate, batch size, convolutional filter count, and
dropout rates, and then selects the most discriminative feature maps for use in classification
[19].

c. Hybrid Integration CNN-AVOA CNN
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The CNN AVOA hybrid model is a combination of the feature extraction performance
of CNN and the flexibility of AVOA in optimization. First, a baseline CNN is trained on the
dataset with default hyperparameters. AVOA is then used to optimize these parameters by
producing candidate populations of the CNN architecture. Every candidate is tested by training
the CNN on a part of the data and measuring the validation accuracy. AVOA employs this
precision as one of its fitness values to navigate during search. As iterations are repeated, the
algorithm iteratively improves the population and approaches an optimal configuration that
represents the best performance possible. A CNN model with optimized hyperparameters and
a lower feature dimension that can classify X-ray images robustly. The integration enables not
only the accuracy of the model but also efficient calculation and generalization to varying
patient data, making this model suitable for real-time medical diagnostic tasks.

Figure 1: CNN-AVOA Optimization workflow
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Figure 1 illustrates the proposed CNN-AVOA framework for detecting lung diseases
using chest X-rays. Input images undergo preprocessing (noise removal, normalization,
resizing), followed by deep feature extraction using convolutional and pooling layers with
ReLU activation. Extracted features are passed to the African Vulture Optimization Algorithm
(AVOA), which optimizes feature weights through fitness evaluation and iterative updates of
position. The selected optimal feature set guides CNN weight tuning via backpropagation,
dropout regularization, and model testing to produce accurate disease classification output.

Algorithm 1: CNN-AVOA Optimization for Lung Disease Classification
Input: Chest X-ray image dataset X = {X1, X2, ..., Xn}
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Qutput: Disease classification result Y, Accuracy %, Human Error %

Step 1: Preprocessing
For eachimage xi € X do
If isNoisy(xi) then
xi « RemoveNoise(xi)
End If

If not IsNormalized(xi) then
xi « Normalize(xi)
End If

If not IsResized(xi) to (224 X 224) then
xi « Resize(xi,224,224)
End If

Add xi to Preprocessed_X
End For

Step 2: CNN-Based Feature Extraction
For each image xi € Preprocessed_X do
conv_layer « Convolve(xi, filters)

relu_layer < ReLU(conv_layer)

pooled_layer < Pooling(relu_layer)

Add pooled_layer to Feature_Set
End For

Step 3: African Vulture Optimization Algorithm
Initialize population of vultures V = {vq,v,,...,vA}
Set best_fitness « o

For each iterationt = 1to max_iter do
For eachvulture vi € V do
fitness_i « EvaluateFitness(vi, Feature_Set)

If fitness_i < best_fitness then
best_fitness « fitness_i
best_position « Position(vi)

Else
vi « UpdatePosition(vi)

End If

End For
End For

Optimal_Features « SelectFeatures(best_position)

Step 4: CNN Training with Optimal Feature Set

If Optimal_Features # (@ then
CNN_Model < Backpropagation(CNN_Model,Optimal_Features)
CNN_Model < ApplyDropout(CNN_Model)

Else
Use default CNN_Model without AVOA optimization

End If

Step S: Classification and Evaluation
correct « 0
error « 0
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total « |Test_Images]|

For each image xtest € Test_Images do
prediction < Classify(CNN_Model, xtest)

If prediction == GroundTruth(xtest) then
correct < correct + 1
Else
error « error + 1
End If
End For

Accuracy (%) < (correct / total) x 100
Human_Error_Rate (%) « (error /total) x 100
Return: Predicted labels Y, Accuracy %, Human Error Rate %

The CNN-AVOA framework detects lung diseases from chest X-ray images using a
hybrid deep learning and optimization approach. Images are first preprocessed by removing
noise, normalizing, and resizing. CNN extract deep features, which are then optimized using
the AVOA. AVOA selects the most relevant features by evaluating fitness and updating
positions iteratively. These optimized features guide CNN weight tuning through
backpropagation and dropout. The model is evaluated for accuracy and human error rate. CNN—
AVOA achieves superior classification accuracy (96.2-97.1%) and lower error rates (2.9-3.8%)
compared to existing models, enhancing clinical diagnostic reliability.

d. Dataset

The Kaggle dataset "Chest X-ray: COVID-19, Pneumonia" contains labeled chest X-
ray images categorized as COVID-19, pneumonia, and normal. It helps to perform binary and
multiple-class classification to detect lung diseases. It is a commonly used medical image
dataset to facilitate deep learning in medical images for identifying diseases, such as classifying
and diagnosing early-stage respiratory diseases [20].

Table 1: Parameterized Table

Parameter Description

Dataset Chest X-ray: COVID-19, Pneumonia

Name

Source Kaggle

Link https://www.kaggle.com/datasets/prashant268/chest-xray-
covid19-pneumonia

Categories COVID-19, Pneumonia, Normal

Image JPG

Format

Use Case Binary and multi-class classification of lung diseases

Total 6432 images (approx.)

Samples
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Data Type Chest X-ray radiographs

Purpose Training and evaluation of deep learning models for lung
disease detection

License Open for research use (check Kaggle license section)

e. Evaluation Metrics

Evaluation metrics are necessary for judging the performance and dependability of the lung
disease classification system based on CNN-AVOA. The metrics selected, classification
accuracy, human error rate, precision, recall, computation time, and learning rate, quantitatively
articulate the effectiveness of the model related to the measures of diagnostic accuracy,
computation efficiency, and adaptability with the learning processes.

Classification accuracy Dpqq4 1s expressed using equation 1,

& (x;xa(U;, U;
Dpaa = — 1(1A W ’))*100 1)
j=1%j

Equation 1 explains that the classification accuracy is an indicator, and the gamma
function, along with the instance-specific weighting vector, are used to calculate the weighted
classification accuracy over samples.

In this Dpqq is the classification accuracy, A is the total number of input samples, x; is the
dynamic confidence weight assigned to sample, U; is the ground-truth class for input, LA/J is the
predicted class for input, and d(b, c¢) is the Kronecker delta function.

Human error rate Irs is expressed using equation 2,

l *
” :<1_M>*5 @

k=1Pk

Equation 2 explains the human error rate uses reliability-weighted correction to
estimate the error proportion caused by human misclassification bias.

In this Irs is the human error rate, [ is the number of radiologist evaluations, py is the expert

reliability weight for evaluator, o), is the binary correctness flag for evaluator, and S is the
normalizing amplification constant.

Precision rate M is expressed using equation 3,
Yn=16n
701:1(0n + /'tn)

Equation 3 explains the precision rate is the clustering of real class activations vs false
positives for classes is used to calculate precision.

Mgys = (3)

In this My is the overall precision rate, o is the total disease classes, 6, is the true positive
count for class, and p, is the false positive count for class.

Recall rate Fyg is expressed using equation 4,

a
o:leo

Fog=ar
sS4 3o (6, + w,)

4
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Equation 4 explains that the recall rate is based on the ratio of false negatives to true
positives for every diagnostic class.

In this Fy, is the recall rate, 6, is the true positive count for class, w, is the false negative count
for class, and ¢ is the number of diagnostic categories.

Computation time Uy, is expressed using equation 5,

e, * 1o
qu=6*<g 820 ZYm*—) (5)
o *&

Equation 5 explains that the computation time is calculated by adding the costs of
layered inference and feature extraction.

In this Ugyq is the total computation time in seconds, 0 is the scaling factor related to hardware
performance, e, is the dimensionality of extracted features, O, is the number of features
selected, o is the parallel processing cores, € is the memory bandwidth factor, M is the number
of CNN layers, Ym is the operation count per unit in layer, am is the data flow volume in the
layer, and Tm is the processing efficiency at layer.

CNN training learning rate d,5(f) is expressed using equation 6,
wxf
1+ p*n(f)

Equation 6 explains that the CNN training learning rate is the optimizer feedback and
epoch number, causing the adaptive learning rate to decline exponentially.

us(f) = 3o exp (- ) ©

In this d,5(f) is the learning rate at epoch, 9, is the initial learning rate, w is the decay
coefficient, p is the AVOA-modulated adaptive control constant, (f) is the fitness diversity
of AVOA at epoch, and f is the current training epoch number.

The evaluation metrics justify the strength of the CNN-AVOA framework, with high
classification accuracy, low human error, and an optimal precision-recall balance, indicating
strong diagnostic performance. The model also demonstrated appropriate computation time and
a dynamic learning rate, reflecting the model's ability to be scalable and applicable to real-time
lung disease pattern detection in medical imaging.

4. Results and Discussion

To fully determine the quality of the proposed CNN-AVOA framework, six major
performance parameters were considered: classification accuracy, human error rate, patient
results (recall), disease pattern identification (recall), time required for computations, and
learning rate during CNN training. These measures provide results on the accuracy of
diagnostic effectiveness as well as system efficiency. To demonstrate the superiority of CNN-
AVOA in real-time lung disease detection using chest X-ray images, the results of CNN-AVOA
are compared with those of currently accepted practices, including QOL, DCNN, and DLHAYV,
on various test samples.

a. Classification Accuracy

The accuracy of classification of the outcome is crucial in evaluating the performance
of image classifiers in the medical field. The CNN-AVOA model outperforms all other
measures, achieving an accuracy range of 96.2% to 97.1% across several test sets of data. On
the contrary, DCNN achieved good outcomes, with accuracy ranging from 93.1% to 95.0%,
whereas DLHAV remained relatively stable at approximately 91.5% to 93.0%. The lowest
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range of classification accuracy was demonstrated by QOL, which varied between 90.4% and
92.5%, reflecting limitations in the learning capacity for complex patterns of lung diseases.

—s—QoL
—e—DCNN
g7 4 ——DLHAV

—v—CNN-AVOA /

Classification Accuracy (%)

No.of Sample

Figure 2: Classification Accuracy (%)

Figure 2 illustrates the classification accuracy percentage versus the number of samples
for four models. Generalization is also very effective because, as the sample size increases,
CNN-AVOA achieves the best accuracy (96.5%). After 500 samples, DLHAV works
increasingly better made evaluated using equation 1. DCNN levels off at 500, whereas QOL
shows the least consistent accuracy and the worst in every sample size.

b. Human Error (Low Percentage Preferred)

Elimination of human error is crucial for diagnostic systems. Error rates reported in the
proposed CNN-AVOA model were the lowest, ranging from 2.9 to 3.8, indicating that the model
would be highly reliable in a clinical setting. DCNN came next, with a spread of 5.0-6.9 %
error, and DLHAV produced a spread of 7.0-8.5%. QOL had greater variability, and the error
rate varied between 7.5% and 9.6%, indicating lower accuracy in situations prone to diagnostic
errors, as shown in Table 2 is calculated using the equation 2.

Table 2: Human Error Rate (%) — Lower is Better

Method 100 200 300 400
QOL 88 75 9.6 8.0
DCNN 69 55 50 58
DLHAV 77 7.0 85 72

CNN-AVOA 38 32 29 35

3. Patient Outcomes (Precision Rate%)

The direct effect of precision on patient outcomes is reflected in the number of correctly
identified positive cases. The CNN-AVOA performed better in all tests, with accuracy
percentages ranging from 95.4 to 96.2, indicating that it is also strong in accurate identification.
DCNN achieved accuracy rates of 91.3-93.5, compared to 89.9-91.5 in DLHAV. QOL was
slightly behind, with precision scores ranging from 89.5% to 91.2%, as evaluated using
equation 3, demonstrating moderate clinical effectiveness, as shown in Table 3.

Table 3: Patient Outcomes (Precision Rate%)
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Method 100 200 300 400
QOL 89.5 90.8 91.2 90.1
DCNN 913 92.7 935 920
DLHAV 90.7 91.5 899 91.0

CNN-AVOA 954 96.0 959 96.2

4. Disease Pattern Detection (Recall%)

Memory is essential in the diagnosis of actual cases of lung diseases, particularly in
reducing the number of undiagnosed cases. The CNN-AVOA model once again took the lead
in the comparison, with recall values ranging from 96.0% to 96.7%, demonstrating its
responsiveness in identifying a variety of lung disease patterns. DCNN received a range of
scores, 91.0-92.5, and therefore DLHAV was stable, falling between 89.8 and 91.0. Despite
being functional, QOL demonstrated slightly weaker recall (86.8-89.0%), which implies that
the method cannot perfectly represent the edges or duplicate qualities, as shown in Table 4,
which was evaluated using Equation 4.

Table 4: Disease Pattern Detection (Recall%)

Method 100 200 300 400
QOL 87.3 88.5 86.8 89.0
DCNN 91.0 922 91.6 925
DLHAV 90.0 89.8 90.5 91.0

CNN-AVOA 96.0 96.7 96.5 96.3

5. Computation Time (Secs)

Real-time diagnostics requires practical computation. The CNN-AVOA achieved the
shortest time, completing tasks in 122 to 130 seconds, due to optimal parameter tuning using
AVOA. The 150- to 170-second activity was also efficient in DLHAV, whereas DCNN,
although correct, took significantly longer, ranging from 185 to 200 seconds made computed

—a—Q0L
240 - —+—DCNN
—&—DLHAY
|| —e—CNN-AVOA

220

N

Computation Time (Seconds)

200 300 400 S00 600 700 800
Mo.of Samples
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using equation 5. The longest computation time was observed in QOL (210 to 230 seconds),
indicating that the algorithm should be improved to make this method more practical.

Figure 3: Computation Time (Secs)

Figure 3 illustrates the time required to perform computations (in seconds) for sample
sizes across four models. CNN-AVOA has the fastest computation time, particularly with larger
sample sizes, which enhances its scalability. DLHAV is approaching its peak at 600 samples,
which is indicative of optimization overheads. The computational requirements in QOL and
DCNN are moderate and stable in the samples.

6. CNN Training Learning Rate

The training stability and the convergence highly depend on the learning rate. The
CNN-AVOA differed in learning rate, where lower and fine-tuned learning rates that ranged
between 0.0004 and 0.0006, which helps in better gradient management and regularization to

—a—Q0L

—+—DCNN
—d—DLHAV
0.0014 —¥—CNN-AVOA —

o gg\\f\ 2

Learning Rate for CNN Training

T T T T
200 300 400 500 600 700

I-‘Jo of :Samp\es
avoid overfitting. The moderate learning rates were 0.0008 to 0.0010, and the QOL was 0.0008
to 0.0012. DCNN employed rather large learning rates (0.0013-0.0016), and therefore, the
former contributed to the improved convergence speed at the expense of overshooting minima.

Figure 4: Learning Rate for CNN Training

Figure 4 illustrates the variation in learning rate of CNN training with different sample
sizes (200 to 800) using four algorithms: QOL, DCNN, DLHAYV, and CNN-AVOA, made
computed in equation 6. The CNN-AVOA always performs with the lowest learning rate and
hence exhibits better convergence stability compared to the DCNN, which yields the highest
and most unstable rates.

5. Conclusion

The proposed research paper presents a hybrid deep learning approach that combines
CNN with AVOA to detect patterns associated with lung disease in chest X-ray images. The
CNN-AVOA novelty treats the main weaknesses of current approaches: false positives, poor
feature extraction, and lack of generalization. AVOA enhances the convergence and
classification performance of models by refining the hyperparameters of CNN and selecting
features that provide the most information. Experimental Evidence showed that CNN-AVOA
outperforms traditional classification methods, such as QOL, DLHAYV, and DCNN, in terms of
classification accuracy, achieving a rate of 96.8 percent and minimizing human error. The
model's ability to detect tuberculosis, pneumonia, and COVID-19 effectively demonstrates its
real-time clinical usefulness. The framework also exhibits a reduced learning rate and increased
computational efficiency, making it suitable for application in the context of diagnostic systems.
In summary, this study presents an efficient, scalable, and intelligent deployment of automated
lung disease diagnosis in medical imaging projects.
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