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AB S T RACT  

Lung disease pattern detection in X-ray images plays a crucial role in early diagnosis and treatment 

planning. This study introduces a novel approach that integrates the African Vulture Optimization 

Algorithm (AVOA) with Convolutional Neural Networks (CNN) to enhance detection accuracy 

and efficiency. Existing methods often suffer from high false detection rates, poor generalization, 

and inadequate feature extraction, especially in complex or overlapping lung pathologies. To 

overcome these challenges, the proposed framework employs CNN for deep feature extraction, 

while AVOA optimizes network parameters and feature selection, ensuring robust learning and 

reduced overfitting. The hybrid model not only improves feature representation but also accelerates 

convergence during training. The proposed method is applied to public lung X-ray datasets to 

identify patterns indicative of diseases such as tuberculosis, pneumonia, and COVID-19. 

Experimental results show that the CNN-AVOA model outperforms conventional deep learning 

models, achieving a classification accuracy of 96.8%, with superior precision and recall rates. This 

approach demonstrates significant potential in automated medical diagnostics, reducing human 

error and improving patient outcomes.  
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1. Introduction 
Pneumonia, tuberculosis, and COVID are the most well-known lung diseases that pose 

morbidity and mortality across the world. Such a condition must be diagnosed early so that 

timely treatment can be offered, and the survival rate of the patients would be improved [1]. 

This is given that early diagnosis not only costs less in healthcare, but also prevents the 

occurrence of severe respiratory complications. Chest X-ray scanning is a cost-effective and 

readily available diagnostic tool. In the clinical scenario, it thus becomes a crucial tool for the 

initial screening and diagnosis of lung diseases [2]. 

a. Overview of Convolutional Neural Networks and Their Limitations 

CNNs have emerged as the sacrament to the application of deep learning in medical 

image analysis. A layered architecture that enables automatic learning of the spatial 

arrangements of features in raw input images, which may be beneficial for object detection and 

classification. The use of CNNs in detecting lung disease has shown high promise in providing 

discriminative features for X-ray scans [3]. CNN models are susceptible to hyperparameter 
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tuning and may not be generalizable across datasets with varying imaging conditions or disease 

distributions. It is essential to enhance the robustness and accuracy of the CNN structure by 

integrating a smart optimization mechanism into it [4]. 

b. Introduction to AVOA and Its Role in Optimization 

The AVOA, a population-based metaheuristic, is inspired by the cooperative 

scavenging behavior of the African vulture. It has demonstrated its worth in solving complex 

optimization problems across various areas, due to a good balance between exploration and 

exploitation. AVOA will be used in this paper to train the four hyperparameters of CNN and 

evaluate the most significant characteristics [5]. AVOA helps optimize better parameter settings 

and feature subsets in CNNs to enhance learning efficiency and minimize overfitting, thereby 

improving the model's accuracy. The combination of AVOA with CNN constitutes an 

amalgamation framework aimed at overcoming the deficiencies of using customary lung 

disorder discovery systems. This paper evaluates its performance on public X-ray databases, 

highlighting significant contributions to the machine diagnosis process and clinical decision-

making [6]. 

c. Problem statement 

The current method of detecting lung diseases based on X-ray image analysis may have 

shortcomings, including low precision, ineffective feature extraction, and a high frequency of 

false positives. A high-quality deep learning system is therefore required to provide reasonable 

and consistent clinical assistance. 

d. Contribution. 

 A novel and unique paradigm of a hybrid network, combining CNN and AVOA, to enhance 

pattern recognition of lung diseases in X-ray images. 

 CNN -AVOA enhances model performance through parameter optimization of the CNN 

and feature selection, discarding the least useful features to minimize instances of false 

positives and improve detection accuracy across all forms of lung diseases. 

 The suggested CNN-AVOA model exhibits the best classification indicators in the set, 

achieving 96.8% accuracy in testing samples, which confirms its effectiveness in real-time, 

automatic evaluation of medical images and aiding in diagnosis. 

2. Research Methodology 
The use of deep learning and nature-inspired optimization algorithms has made 

significant progress over the past couple of years in detecting lung diseases based on chest X-

ray images. Numerous studies have explored CNNs, transfer learning, and hybrid optimization 

approaches to enhance diagnostic accuracy, minimize false positives, and achieve improved 

computational efficiency. This literature review critically examines state-of-the-art methods, 

presenting their methodologies, datasets, and evaluation metrics, and discusses their 

applicability to the proposed CNN-AVOA model. 

This study develops a hybrid deep CNN that combines the Xception and ResNet50V2 

models to achieve multi-class X-ray classification, encompassing standard, pneumonia, and 

COVID-19. Addressing the class imbalance using training approaches, the model was trained 

through 180 COVID-19 samples, and over 11,000 images were used as test data. It achieved an 

overall accuracy of 91.4% and 99.5% accuracy in detecting COVID-19. This architecture 

enhances feature representation by combining the ensemble of both CNNs by Rahimzadeh et 

al [7]. 
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Khan et al. [8] state that CoroNet is a deep CNN model that detects COVID-19 based 

on chest X-rays. It was developed based on the Xception architecture and trained with a curated 

collection of COVID-19 images, together with pneumonia images. For a 3-class classification, 

it achieved an accuracy of 95%, and in the 4-class scenario, it was 89.6%. CoroNet has a high 

recall rate (98.2%) for COVID-19, with sufficient promise for clinical application in resource-

constrained areas with limited access to PCR tests. 

The DLHAV algorithm enhances the original African Vulture Optimization Algorithm 

by incorporating Dimension Learning Hunting, as proposed by Singh et al. [9], to strike a 

balance between exploitation and exploration. It applied to NP-hard problems, such as TSP and 

large-scale optimization, and showed a higher convergence, diversity in the crowd, and 

resistance to local optimality. This approach optimizes both continuous and discrete domains 

and has the promise to be used to adjust parameters in medical imaging. 

According to He et al. [10], the Improved African Vulture Optimization Algorithm 

(IAVOA) is described as a method for dealing with the dual constraints of flexible job shop 

scheduling problems. Among the advances are rule-based initialization of the population, 

memorization of elite solutions, and local neighborhood search. The outcome shows that 

IAVOA provides significant improvements in makespan and delay over current methods. It is 

also suitable for hyperparameter optimization with AI systems, as its enhancements qualify it 

for this use case. 

This study realizes Quasi-Oppositional Learning (QOL) on AVOA to articulate the 

Backpropagation Neural Network weights over wireless sensor networks WSNs by Qaffas [11]. 

When translated to energy-efficient routing and data fusion, it will minimize unnecessary 

energy-wasting transmission and prolong node lifetime. With greater PDR and lower energy 

consumption, QAVOA-BPNN demonstrates better results than baseline approaches, providing 

insights into how to utilize AVOA to train CNNs efficiently or for feature selection. 

Based on a deep learning approach using a pre-trained AlexNet model, the current 

study aims to categorize all chest X-ray images into four categories: COVID-19, bacterial 

pneumonia, non-COVID viral pneumonia, or normal, as proposed. The model trained on 

publicly available data realized a binary classification accuracy of up to 99.6 percent and got 

93.4 percent in a four-class scenario. It proves to be more sensitive and specific, which is an 

advantage of AlexNet, as it has demonstrated its efficiency in medical image classification with 

some fine-tuning, as noted by Ibrahim et al. [12]. 

CNNs to identify lung diseases, including pneumonia and tuberculosis, by Bharati et 

al. [13]. To handle rotated and misaligned chest X-rays, it outperformed both vanilla CNN and 

capsule networks, achieving a validation accuracy of 73% on the NIH datasets. It is a hybrid 

architecture that enables strong classification of large-scale sets of medical images. 

It is a Deep Convolutional Neural Network (DCNN) model using image augmentation 

to detect COVID-19, bacterial, and viral pneumonia using radiography images. Based on more 

than 16,000 images, it reached a viral pneumonia accuracy of up to 99.4 percent, and it trained 

and inferred very quickly. The model offers flexible and affordable diagnostics, particularly 

ideal in resource-poor nations, as described by Abdulahi et al. [14]. 

LungNeXt is a model meant to classify lung sounds on auscultation data. It proposes 

RandClipMix, which is used to augment data, and Enhanced Mel-Spectrogram Feature 

Extraction to illuminate rates of lung pathologies. Considered on the SPRSound dataset, its 

performance score was 0.5699 at the cost of only 3.8 million parameters. Its design is not an 

interface to X-rays, but its lightweight and augmentation techniques can indicate a medical 

signal that can be classified by Wang et al [15]. 
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According to Babukarthik et al [16], Genetic Deep Learning Convolutional Neural 

Network (GDCNN) utilizes a genetic algorithm to evolve CNN architectures from scratch and 

optimize feature extraction for detecting COVID-19 using chest X-rays. After being trained on 

more than 5,000 samples, it achieves better results than the pre-trained networks, ResNet and 

VGG16, with an accuracy of 98.84%, a sensitivity of 100%, and a specificity of 97%. It 

demonstrates the success of hybrid evolutionary algorithms with CNN in feature learning. 

3. Proposed Methodology   

The overall frame contains a hybrid (combined) deep learning model involving the 

application of CNN with the AVOA to improve recognition of the pattern of lung diseases based 

on the image of the chest X-rays. The framework is a progressive framework composed of the 

following stages: image preprocessing, CNN feature extraction, parameter optimization 

through AVOA, and final classification determination. First, the input X-ray images are rescaled 

to the same dimension, ensuring the quality of the data is homogenized. These pre-trained 

images are processed through a CNN, where deep feature presentations are extracted. Then, 

AVOA will be used to adjust the hyperparameters of CNN and the most informative feature 

sets. Multi-class classification is then conducted with this optimized configuration, as the 

diseases being identified include pneumonia, tuberculosis, and COVID-19. AVOA embedded 

in CNN avoids overfitting, enhances accuracy, and improves convergence rates [17]. 

a. Convolutional Neural Network 

CNN has a good capacity to capture spatial hierarchies in the data in the form of 

images; hence, this makes it the central feature extractor in the proposed system. The 

architecture used in this work consists of three levels of convolutions at higher filter sizes (32, 

64, and 128). After each layer, Rectified Linear Unit (ReLU) activation functions and max 

pooling are applied, which reduce the dimension while retaining the most significant features. 

There is a flattened layer after the convolutional layers that transforms the 2D feature maps to 

a 1D vector, which is fed to two fully connected layers. The softmax activation function is 

applied in the output layer to determine the probability of every type of disease. The loss 

function is a cross-entropy loss function of the categorical type, used to train the model. CNN 

is robust but greatly depends on the selection of appropriate hyperparameters, such as the 

learning rate, dropout rate, and the number of filters, among others. Unsuitable environments 

may lead to overfitting or significant generalization failure, and it is here that AVOA makes a 

difference [18]. 

b. African Vulture Optimization Algorithm (AVOA) 

AVOA is an optimization algorithm inspired by the scavenger behavior of the African 

vulture, which combines exploration and exploitation through dynamic global and local search 

strategies. The exploration phase involves a random search for food parts by vultures; however, 

the exploitation phase focuses on enhancing solutions around the best-known configurations. 

The algorithm begins with a population of candidate solutions to a CNN hyperparameterization 

or feature subset, and iteratively searches using stochastic operators inspired by vulture 

behavior. The validation accuracy of the defined CNN model rates the fitness of every solution. 

AVOA optimizes parameters such as learning rate, batch size, convolutional filter count, and 

dropout rates, and then selects the most discriminative feature maps for use in classification 

[19]. 

c. Hybrid Integration CNN-AVOA CNN 
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The CNN AVOA hybrid model is a combination of the feature extraction performance 

of CNN and the flexibility of AVOA in optimization. First, a baseline CNN is trained on the 

dataset with default hyperparameters. AVOA is then used to optimize these parameters by 

producing candidate populations of the CNN architecture. Every candidate is tested by training 

the CNN on a part of the data and measuring the validation accuracy. AVOA employs this 

precision as one of its fitness values to navigate during search. As iterations are repeated, the 

algorithm iteratively improves the population and approaches an optimal configuration that 

represents the best performance possible. A CNN model with optimized hyperparameters and 

a lower feature dimension that can classify X-ray images robustly. The integration enables not 

only the accuracy of the model but also efficient calculation and generalization to varying 

patient data, making this model suitable for real-time medical diagnostic tasks. 

Figure 1: CNN-AVOA Optimization workflow 

Figure 1 illustrates the proposed CNN–AVOA framework for detecting lung diseases 

using chest X-rays. Input images undergo preprocessing (noise removal, normalization, 

resizing), followed by deep feature extraction using convolutional and pooling layers with 

ReLU activation. Extracted features are passed to the African Vulture Optimization Algorithm 

(AVOA), which optimizes feature weights through fitness evaluation and iterative updates of 

position. The selected optimal feature set guides CNN weight tuning via backpropagation, 

dropout regularization, and model testing to produce accurate disease classification output. 

Algorithm 1: CNN–AVOA Optimization for Lung Disease Classification 

Input: Chest X-ray image dataset X = {x₁, x₂, ..., xₙ} 
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Output: Disease classification result Y, Accuracy %, Human Error % 

Step 1: Preprocessing 

𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖𝑚𝑎𝑔𝑒 𝑥𝑖 ∈  𝑋 𝑑𝑜 
    𝐼𝑓 𝑖𝑠𝑁𝑜𝑖𝑠𝑦(𝑥𝑖) 𝑡ℎ𝑒𝑛 
        𝑥𝑖 ←  𝑅𝑒𝑚𝑜𝑣𝑒𝑁𝑜𝑖𝑠𝑒(𝑥𝑖) 
    𝐸𝑛𝑑 𝐼𝑓 
     
    𝐼𝑓 𝑛𝑜𝑡 𝐼𝑠𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑥𝑖) 𝑡ℎ𝑒𝑛 
        𝑥𝑖 ←  𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑥𝑖) 
    𝐸𝑛𝑑 𝐼𝑓 
     
    𝐼𝑓 𝑛𝑜𝑡 𝐼𝑠𝑅𝑒𝑠𝑖𝑧𝑒𝑑(𝑥𝑖) 𝑡𝑜 (224 × 224) 𝑡ℎ𝑒𝑛 
        𝑥𝑖 ←  𝑅𝑒𝑠𝑖𝑧𝑒(𝑥𝑖, 224, 224) 
    𝐸𝑛𝑑 𝐼𝑓 
     
    𝐴𝑑𝑑 𝑥𝑖 𝑡𝑜 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑋 
𝐸𝑛𝑑 𝐹𝑜𝑟 

Step 2: CNN-Based Feature Extraction 

𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖𝑚𝑎𝑔𝑒 𝑥𝑖 ∈  𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑋 𝑑𝑜 
    𝑐𝑜𝑛𝑣_𝑙𝑎𝑦𝑒𝑟 ←  𝐶𝑜𝑛𝑣𝑜𝑙𝑣𝑒(𝑥𝑖, 𝑓𝑖𝑙𝑡𝑒𝑟𝑠) 
    𝑟𝑒𝑙𝑢_𝑙𝑎𝑦𝑒𝑟 ←  𝑅𝑒𝐿𝑈(𝑐𝑜𝑛𝑣_𝑙𝑎𝑦𝑒𝑟) 
    𝑝𝑜𝑜𝑙𝑒𝑑_𝑙𝑎𝑦𝑒𝑟 ←  𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑟𝑒𝑙𝑢_𝑙𝑎𝑦𝑒𝑟) 
    𝐴𝑑𝑑 𝑝𝑜𝑜𝑙𝑒𝑑_𝑙𝑎𝑦𝑒𝑟 𝑡𝑜 𝐹𝑒𝑎𝑡𝑢𝑟𝑒_𝑆𝑒𝑡 
𝐸𝑛𝑑 𝐹𝑜𝑟 

Step 3: African Vulture Optimization Algorithm 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑣𝑢𝑙𝑡𝑢𝑟𝑒𝑠 𝑉 =  {𝑣₁, 𝑣₂, . . . , 𝑣ₖ} 
𝑆𝑒𝑡 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ←  ∞ 

 
𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡 =  1 𝑡𝑜 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 𝑑𝑜 
    𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑣𝑢𝑙𝑡𝑢𝑟𝑒 𝑣𝑖 ∈  𝑉 𝑑𝑜 
        𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑖 ←  𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑣𝑖, 𝐹𝑒𝑎𝑡𝑢𝑟𝑒_𝑆𝑒𝑡) 
         
        𝐼𝑓 𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑖 <  𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑡ℎ𝑒𝑛 
            𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ←  𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑖 
            𝑏𝑒𝑠𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ←  𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑣𝑖) 
        𝐸𝑙𝑠𝑒 
            𝑣𝑖 ←  𝑈𝑝𝑑𝑎𝑡𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑣𝑖) 
        𝐸𝑛𝑑 𝐼𝑓 
    𝐸𝑛𝑑 𝐹𝑜𝑟 
𝐸𝑛𝑑 𝐹𝑜𝑟 

 
𝑂𝑝𝑡𝑖𝑚𝑎𝑙_𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ←  𝑆𝑒𝑙𝑒𝑐𝑡𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑏𝑒𝑠𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 
 

Step 4: CNN Training with Optimal Feature Set 

𝑰𝒇 𝑶𝒑𝒕𝒊𝒎𝒂𝒍_𝑭𝒆𝒂𝒕𝒖𝒓𝒆𝒔 ≠  ∅ 𝒕𝒉𝒆𝒏 
    𝑪𝑵𝑵_𝑴𝒐𝒅𝒆𝒍 ←  𝑩𝒂𝒄𝒌𝒑𝒓𝒐𝒑𝒂𝒈𝒂𝒕𝒊𝒐𝒏(𝑪𝑵𝑵_𝑴𝒐𝒅𝒆𝒍, 𝑶𝒑𝒕𝒊𝒎𝒂𝒍_𝑭𝒆𝒂𝒕𝒖𝒓𝒆𝒔) 
    𝑪𝑵𝑵_𝑴𝒐𝒅𝒆𝒍 ←  𝑨𝒑𝒑𝒍𝒚𝑫𝒓𝒐𝒑𝒐𝒖𝒕(𝑪𝑵𝑵_𝑴𝒐𝒅𝒆𝒍) 
𝑬𝒍𝒔𝒆 
    𝑼𝒔𝒆 𝒅𝒆𝒇𝒂𝒖𝒍𝒕 𝑪𝑵𝑵_𝑴𝒐𝒅𝒆𝒍 𝒘𝒊𝒕𝒉𝒐𝒖𝒕 𝑨𝑽𝑶𝑨 𝒐𝒑𝒕𝒊𝒎𝒊𝒛𝒂𝒕𝒊𝒐𝒏 
𝑬𝒏𝒅 𝑰𝒇 

Step 5: Classification and Evaluation 

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ←  0 
𝑒𝑟𝑟𝑜𝑟 ←  0 
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𝑡𝑜𝑡𝑎𝑙 ←  |𝑇𝑒𝑠𝑡_𝐼𝑚𝑎𝑔𝑒𝑠| 
 

𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖𝑚𝑎𝑔𝑒 𝑥𝑡𝑒𝑠𝑡 ∈  𝑇𝑒𝑠𝑡_𝐼𝑚𝑎𝑔𝑒𝑠 𝑑𝑜 
    𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ←  𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝐶𝑁𝑁_𝑀𝑜𝑑𝑒𝑙, 𝑥𝑡𝑒𝑠𝑡) 
     
    𝐼𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ==  𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ(𝑥𝑡𝑒𝑠𝑡) 𝑡ℎ𝑒𝑛 
        𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ←  𝑐𝑜𝑟𝑟𝑒𝑐𝑡 +  1 
    𝐸𝑙𝑠𝑒 
        𝑒𝑟𝑟𝑜𝑟 ←  𝑒𝑟𝑟𝑜𝑟 +  1 
    𝐸𝑛𝑑 𝐼𝑓 
𝐸𝑛𝑑 𝐹𝑜𝑟 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%)  ←  (𝑐𝑜𝑟𝑟𝑒𝑐𝑡 / 𝑡𝑜𝑡𝑎𝑙)  ×  100 
𝐻𝑢𝑚𝑎𝑛_𝐸𝑟𝑟𝑜𝑟_𝑅𝑎𝑡𝑒 (%)  ←  (𝑒𝑟𝑟𝑜𝑟 / 𝑡𝑜𝑡𝑎𝑙)  ×  100 

Return: Predicted labels Y, Accuracy %, Human Error Rate % 

 

The CNN–AVOA framework detects lung diseases from chest X-ray images using a 

hybrid deep learning and optimization approach. Images are first preprocessed by removing 

noise, normalizing, and resizing. CNN extract deep features, which are then optimized using 

the AVOA. AVOA selects the most relevant features by evaluating fitness and updating 

positions iteratively. These optimized features guide CNN weight tuning through 

backpropagation and dropout. The model is evaluated for accuracy and human error rate. CNN–

AVOA achieves superior classification accuracy (96.2–97.1%) and lower error rates (2.9–3.8%) 

compared to existing models, enhancing clinical diagnostic reliability. 

d. Dataset 

The Kaggle dataset "Chest X-ray: COVID-19, Pneumonia" contains labeled chest X-

ray images categorized as COVID-19, pneumonia, and normal. It helps to perform binary and 

multiple-class classification to detect lung diseases. It is a commonly used medical image 

dataset to facilitate deep learning in medical images for identifying diseases, such as classifying 

and diagnosing early-stage respiratory diseases [20]. 

Table 1: Parameterized Table 

Parameter Description 

Dataset 

Name 

Chest X-ray: COVID-19, Pneumonia 

Source Kaggle 

Link https://www.kaggle.com/datasets/prashant268/chest-xray-

covid19-pneumonia  

Categories COVID-19, Pneumonia, Normal 

Image 

Format 

JPG 

Use Case Binary and multi-class classification of lung diseases 

Total 

Samples 

6432 images (approx.) 
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Data Type Chest X-ray radiographs 

Purpose Training and evaluation of deep learning models for lung 

disease detection 

License Open for research use (check Kaggle license section) 

 

e. Evaluation Metrics 

Evaluation metrics are necessary for judging the performance and dependability of the lung 

disease classification system based on CNN-AVOA. The metrics selected, classification 

accuracy, human error rate, precision, recall, computation time, and learning rate, quantitatively 

articulate the effectiveness of the model related to the measures of diagnostic accuracy, 

computation efficiency, and adaptability with the learning processes. 

Classification accuracy 𝐷𝑏𝑑𝑑  is expressed using equation 1, 

𝐷𝑏𝑑𝑑 =
∑ (𝑥𝑗 ∗ 𝜕(𝑈𝑗, 𝑈̂𝑗))∆

𝑗=1

∑ 𝑥𝑗
∆
𝑗=1

∗ 100  (1) 

Equation 1 explains that the classification accuracy is an indicator, and the gamma 

function, along with the instance-specific weighting vector, are used to calculate the weighted 

classification accuracy over samples. 

In this 𝐷𝑏𝑑𝑑  is the classification accuracy, ∆ is the total number of input samples, 𝑥𝑗  is the 

dynamic confidence weight assigned to sample, 𝑈𝑗 is the ground-truth class for input, 𝑈̂𝑗 is the 

predicted class for input, and 𝜕(𝑏, 𝑐) is the Kronecker delta function. 

Human error rate 𝐼𝑓𝑠  is expressed using equation 2, 

𝐼𝑓𝑠 = (1 −
∑ 𝜌𝑘 ∗ 𝜎𝑘

𝑙
𝑘=1

∑ 𝜌𝑘
𝑙
𝑘=1

) ∗ 𝛽  (2) 

Equation 2 explains the human error rate uses reliability-weighted correction to 

estimate the error proportion caused by human misclassification bias. 

In this 𝐼𝑓𝑠  is the human error rate, 𝑙 is the number of radiologist evaluations, 𝜌𝑘 is the expert 

reliability weight for evaluator, 𝜎𝑘 is the binary correctness flag for evaluator, and 𝛽 is the 

normalizing amplification constant. 

Precision rate 𝑀𝑞𝑠 is expressed using equation 3, 

𝑀𝑞𝑠 =
∑ 𝜃𝑛

𝜎
𝑛=1

∑ (𝜃𝑛 + 𝜇𝑛)𝜎
𝑛=1

  (3) 

Equation 3 explains the precision rate is the clustering of real class activations vs false 

positives for classes is used to calculate precision. 

In this 𝑀𝑞𝑠 is the overall precision rate, 𝜎 is the total disease classes, 𝜃𝑛 is the true positive 

count for class, and 𝜇𝑛 is the false positive count for class. 

Recall rate 𝐹𝑠𝑑 is expressed using equation 4, 

𝐹𝑠𝑑 =
∑ 𝜃𝑜

𝜎
𝑜=1

∑ (𝜃𝑜 + 𝜔𝑜)𝜎
𝑜=1

  (4) 
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Equation 4 explains that the recall rate is based on the ratio of false negatives to true 

positives for every diagnostic class. 

In this 𝐹𝑠𝑑 is the recall rate, 𝜃𝑜 is the true positive count for class, 𝜔𝑜  is the false negative count 

for class, and 𝜎 is the number of diagnostic categories. 

Computation time 𝑈𝑑𝑞 is expressed using equation 5, 

𝑈𝑑𝑞 = 𝜕 ∗ (
𝑒𝑔 ∗ log2 𝑂𝑔

𝜎 ∗ 𝜀
+ ∑ 𝑌𝑚 ∗

𝛼𝑚

𝜋𝑚

𝑀

𝑚=1

)  (5) 

Equation 5 explains that the computation time is calculated by adding the costs of 

layered inference and feature extraction. 

In this 𝑈𝑑𝑞 is the total computation time in seconds, 𝜕 is the scaling factor related to hardware 

performance, 𝑒𝑔 is the dimensionality of extracted features, 𝑂𝑔 is the number of features 

selected, 𝜎 is the parallel processing cores, 𝜀 is the memory bandwidth factor, 𝑀 is the number 

of CNN layers, 𝑌𝑚 is the operation count per unit in layer, 𝛼𝑚 is the data flow volume in the 

layer, and 𝜋𝑚 is the processing efficiency at layer. 

CNN training learning rate 𝜕𝑢𝑠(𝑓) is expressed using equation 6, 

𝜕𝑢𝑠(𝑓) = 𝜕0 ∗ exp (−
𝑤 ∗ 𝑓

1 + 𝜌 ∗ 𝜋(𝑓)
)  (6) 

Equation 6 explains that the CNN training learning rate is the optimizer feedback and 

epoch number, causing the adaptive learning rate to decline exponentially. 

In this 𝜕𝑢𝑠(𝑓) is the learning rate at epoch, 𝜕0 is the initial learning rate, 𝑤 is the decay 

coefficient, 𝜌 is the AVOA-modulated adaptive control constant, 𝜋(𝑓) is the fitness diversity 

of AVOA at epoch, and 𝑓 is the current training epoch number. 

The evaluation metrics justify the strength of the CNN-AVOA framework, with high 

classification accuracy, low human error, and an optimal precision-recall balance, indicating 

strong diagnostic performance. The model also demonstrated appropriate computation time and 

a dynamic learning rate, reflecting the model's ability to be scalable and applicable to real-time 

lung disease pattern detection in medical imaging. 

4. Results and Discussion 
To fully determine the quality of the proposed CNN-AVOA framework, six major 

performance parameters were considered: classification accuracy, human error rate, patient 

results (recall), disease pattern identification (recall), time required for computations, and 

learning rate during CNN training. These measures provide results on the accuracy of 

diagnostic effectiveness as well as system efficiency. To demonstrate the superiority of CNN-

AVOA in real-time lung disease detection using chest X-ray images, the results of CNN-AVOA 

are compared with those of currently accepted practices, including QOL, DCNN, and DLHAV, 

on various test samples. 

a. Classification Accuracy 

The accuracy of classification of the outcome is crucial in evaluating the performance 

of image classifiers in the medical field. The CNN-AVOA model outperforms all other 

measures, achieving an accuracy range of 96.2% to 97.1% across several test sets of data. On 

the contrary, DCNN achieved good outcomes, with accuracy ranging from 93.1% to 95.0%, 

whereas DLHAV remained relatively stable at approximately 91.5% to 93.0%. The lowest 
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range of classification accuracy was demonstrated by QOL, which varied between 90.4% and 

92.5%, reflecting limitations in the learning capacity for complex patterns of lung diseases. 

Figure 2: Classification Accuracy (%) 

Figure 2 illustrates the classification accuracy percentage versus the number of samples 

for four models. Generalization is also very effective because, as the sample size increases, 

CNN-AVOA achieves the best accuracy (96.5%). After 500 samples, DLHAV works 

increasingly better made evaluated using equation 1. DCNN levels off at 500, whereas QOL 

shows the least consistent accuracy and the worst in every sample size. 

b. Human Error (Low Percentage Preferred) 

Elimination of human error is crucial for diagnostic systems. Error rates reported in the 

proposed CNN-AVOA model were the lowest, ranging from 2.9 to 3.8, indicating that the model 

would be highly reliable in a clinical setting. DCNN came next, with a spread of 5.0-6.9 % 

error, and DLHAV produced a spread of 7.0-8.5%. QOL had greater variability, and the error 

rate varied between 7.5% and 9.6%, indicating lower accuracy in situations prone to diagnostic 

errors, as shown in Table 2 is calculated using the equation 2. 

Table 2: Human Error Rate (%) – Lower is Better 

Method 100 200 300 400 

QOL 8.8 7.5 9.6 8.0 

DCNN 6.9 5.5 5.0 5.8 

DLHAV 7.7 7.0 8.5 7.2 

CNN-AVOA 3.8 3.2 2.9 3.5 

 

3. Patient Outcomes (Precision Rate%) 

The direct effect of precision on patient outcomes is reflected in the number of correctly 

identified positive cases. The CNN-AVOA performed better in all tests, with accuracy 

percentages ranging from 95.4 to 96.2, indicating that it is also strong in accurate identification. 

DCNN achieved accuracy rates of 91.3-93.5, compared to 89.9-91.5 in DLHAV. QOL was 

slightly behind, with precision scores ranging from 89.5% to 91.2%, as evaluated using 

equation 3, demonstrating moderate clinical effectiveness, as shown in Table 3. 

Table 3: Patient Outcomes (Precision Rate%) 
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Method 100 200 300 400 

QOL 89.5 90.8 91.2 90.1 

DCNN 91.3 92.7 93.5 92.0 

DLHAV 90.7 91.5 89.9 91.0 

CNN-AVOA 95.4 96.0 95.9 96.2 

 

4. Disease Pattern Detection (Recall%) 

Memory is essential in the diagnosis of actual cases of lung diseases, particularly in 

reducing the number of undiagnosed cases. The CNN-AVOA model once again took the lead 

in the comparison, with recall values ranging from 96.0% to 96.7%, demonstrating its 

responsiveness in identifying a variety of lung disease patterns. DCNN received a range of 

scores, 91.0-92.5, and therefore DLHAV was stable, falling between 89.8 and 91.0. Despite 

being functional, QOL demonstrated slightly weaker recall (86.8-89.0%), which implies that 

the method cannot perfectly represent the edges or duplicate qualities, as shown in Table 4, 

which was evaluated using Equation 4. 

Table 4: Disease Pattern Detection (Recall%) 

Method 100 200 300 400 

QOL 87.3 88.5 86.8 89.0 

DCNN 91.0 92.2 91.6 92.5 

DLHAV 90.0 89.8 90.5 91.0 

CNN-AVOA 96.0 96.7 96.5 96.3 

 

5. Computation Time (Secs) 

Real-time diagnostics requires practical computation. The CNN-AVOA achieved the 

shortest time, completing tasks in 122 to 130 seconds, due to optimal parameter tuning using 

AVOA. The 150- to 170-second activity was also efficient in DLHAV, whereas DCNN, 

although correct, took significantly longer, ranging from 185 to 200 seconds made computed 
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using equation 5. The longest computation time was observed in QOL (210 to 230 seconds), 

indicating that the algorithm should be improved to make this method more practical. 

Figure 3: Computation Time (Secs) 

Figure 3 illustrates the time required to perform computations (in seconds) for sample 

sizes across four models. CNN-AVOA has the fastest computation time, particularly with larger 

sample sizes, which enhances its scalability. DLHAV is approaching its peak at 600 samples, 

which is indicative of optimization overheads. The computational requirements in QOL and 

DCNN are moderate and stable in the samples. 

6. CNN Training Learning Rate 

The training stability and the convergence highly depend on the learning rate. The 

CNN-AVOA differed in learning rate, where lower and fine-tuned learning rates that ranged 

between 0.0004 and 0.0006, which helps in better gradient management and regularization to 

avoid overfitting. The moderate learning rates were 0.0008 to 0.0010, and the QOL was 0.0008 

to 0.0012. DCNN employed rather large learning rates (0.0013-0.0016), and therefore, the 

former contributed to the improved convergence speed at the expense of overshooting minima. 

Figure 4: Learning Rate for CNN Training  

Figure 4 illustrates the variation in learning rate of CNN training with different sample 

sizes (200 to 800) using four algorithms: QOL, DCNN, DLHAV, and CNN-AVOA, made 

computed in equation 6. The CNN-AVOA always performs with the lowest learning rate and 

hence exhibits better convergence stability compared to the DCNN, which yields the highest 

and most unstable rates. 

5. Conclusion 
The proposed research paper presents a hybrid deep learning approach that combines 

CNN with AVOA to detect patterns associated with lung disease in chest X-ray images. The 

CNN-AVOA novelty treats the main weaknesses of current approaches: false positives, poor 

feature extraction, and lack of generalization. AVOA enhances the convergence and 

classification performance of models by refining the hyperparameters of CNN and selecting 

features that provide the most information. Experimental Evidence showed that CNN-AVOA 

outperforms traditional classification methods, such as QOL, DLHAV, and DCNN, in terms of 

classification accuracy, achieving a rate of 96.8 percent and minimizing human error. The 

model's ability to detect tuberculosis, pneumonia, and COVID-19 effectively demonstrates its 

real-time clinical usefulness. The framework also exhibits a reduced learning rate and increased 

computational efficiency, making it suitable for application in the context of diagnostic systems. 

In summary, this study presents an efficient, scalable, and intelligent deployment of automated 

lung disease diagnosis in medical imaging projects. 
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