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AB S T RACT  

The increasing deployment of smart grids has led to the generation of large-scale energy data, 

creating new opportunities for intelligent pattern mining to enhance energy efficiency and grid 

reliability. This study presents a hybrid optimization framework for mining meaningful patterns in 

smart grid energy data using Enhanced Binary Firefly Optimization (EBFO). Existing pattern 

mining techniques often struggle with high-dimensional data, noise, and low precision in pattern 

discovery, which limits their effectiveness in innovative grid environments. Additionally, 

traditional algorithms lack robustness when dealing with temporal variations and redundant features 

in energy consumption data. To address these challenges, this paper proposes a novel framework, 

the Binary Enhanced Firefly-based Pattern Miner (BE-FPM), integrated with a Thermal Image 

Denoising Autoencoder (TIDA). BE-FPM leverages an improved binary firefly algorithm with 

adaptive light intensity and movement strategies to explore the solution space for frequent pattern 

detection efficiently. Meanwhile, TIDA preprocesses smart meter readings by converting 

consumption patterns into thermal-like images and applying denoising autoencoding to reduce data 

noise and highlight meaningful structures. The proposed method is used on residential smart grid 

datasets for practical demand response analysis and load forecasting. By identifying accurate and 

noise-free consumption patterns, utilities can more effectively schedule energy distribution, reduce 

peak loads, and improve energy efficiency. Experimental results demonstrate that BE-FPM 

outperforms traditional mining approaches in terms of pattern accuracy, convergence speed, and 

noise resilience. This hybrid technique provides a promising direction for intelligent energy data 

analysis in future innovative grid applications. 

. 
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1. Introduction 
A. Overview 

The Smart system is what the future electric power system will look like. It is a complex 

system that requires a significant amount of information [1]. Modern sensors, real-time 

connections, and sophisticated decision-making systems all work together to ensure that energy 

is distributed efficiently, reliably, and sustainably [2]. Smart meters and the Internet of Things 

(IoT) are collecting a significant amount of information over time about how individuals use 
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electricity [3]. Predicting demand, finding issues, and making better use of energy may all be 

possible outcomes of trend mining this energy data [4].  

Pattern mining in smart grids involves identifying patterns in how individuals or groups 

utilize electricity. By understanding these trends, grid operators can enhance the resilience of 

their systems, adopt dynamic pricing models, and more effectively manage load demand [5]. 

This task is challenging since usage patterns aren't always linear, noise or missing values may 

create data issues, and algorithms that can handle large amounts of data in real-time are needed 

to assess high-dimensional, temporally rich information [6]. 

Increasingly, people are adopting hybrid approaches that integrate evolutionary 

optimization with machine learning to address these challenges [7]. In pattern mining and other 

discrete search settings, swarm intelligence approaches, such as the FA function, are practical 

[8]. Using deep learning approaches, specifically autoencoders for denoising and 

dimensionality reduction, enhances the entire system's strength and adaptability when it must 

cope with noisy input in the real world [9]. 

The BE-FPM and the TIDA are the two main aspects of the new architecture provide 

in this paper [10]. This approach utilizes binary-optimized firefly swarms to reliably and 

efficiently identify patterns on a wide scale. It also uses image-like formats to reduce noise in 

time-series data. 

B. Challenges in Smart Grid Pattern Mining 

Smart meters provide us with a lot of information, but it's still not easy to find patterns. 

Some significant issues include the possibility that the data may not be accurate or may be 

missing, users' actions may vary significantly over time, and it's challenging to make sense of 

binary data that has more than one dimension. It's also challenging for typical optimization 

algorithms to handle grid data in real-time or avoid local minima. A system that can handle 

noise and execute computations efficiently to address these problems.   

The main objectives of this paper are: 

 The goal of this hybrid architecture is to create a system that uses both swarm 

pattern mining and image-based denoising to clean up smart grid data. 

 The goal is to make the binary firefly method better so that it can rapidly detect 
patterns in binary energy datasets. 

 To see how successfully the system optimized demand responses, handled noise, 

and discovered patterns. 

This is how the remainder of the paper is organized: Section 2 presents works that are 

connected. Section 3, explains about the suggested BE-FPM and TIDA structure. In Section 4, 

discuss how the experiment was set up. Part 5 discusses the outcomes and assessments in more 

detail. The study ends in Section 6, which also includes an overview of prospective topics for 

further investigation. 

2. Research Methodology 
   

This paper discusses a novel approach to mitigating power losses in partially shaded 

photovoltaic (PV) arrays. The method is referred to as the BFA-PR. The proposed solution 

outperforms standard configurations on a 9×9 PV panel array with four shading patterns (SW, 

LW, SN, and LN). The BFA-PR might increase the global maximum power by up to 36% 

compared to TCT [11]. Fill factor, power loss, and energy production are key performance 
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criteria that highlight its superiority. A Naive Bayes-based machine learning method also 

detects physical damage in panels, demonstrating the effectiveness of the technology.  

The paper demonstrates the application of a Hybrid Deep Neural Network and Firefly 

Algorithm for Smart Energy Optimization (HDNN-FFSEO) in smart buildings. The approach 

uses sensor data on temperature, light, and CO₂ to assess comfort and energy efficiency. The 

HDNN-FFSEO utilizes both the Firefly Algorithm and a rule-based DNN to monitor individual 

comfort levels and minimize energy consumption [12]. It outperforms CNN, AV, and Multi-

View techniques, achieving an accuracy of 99.17%. The suggested method facilitates easier 

control of energy use and enables the utilization of smart homes connected to the Internet of 

Things.  

This paper discusses a Binary Firefly Feature Selection for Intrusion Detection Systems 

(BFFA-IDS) that aims to enhance the accuracy of detection on datasets with a large number of 

dimensions [13]. The BFFA-IDS takes the data from the UNSW-NB15 dataset and normalizes 

it. Then, it utilizes BFFA to identify the most effective features and sorts them using a Random 

Forest model. The system is 99.72% accurate and 99.84% effective at finding things, and it has 

significantly fewer false positives. It does a better job than the best approaches at managing 

huge feature areas for network security that can trust.  

This paper is about BFDRL-HEMS, which stands for HEMS Optimization Based on 

Bacterial Foraging and Deep Reinforcement Learning. It helps families save electricity. The 

BFDRL-HEMS utilizes both BFMO and DRL to automatically configure appliances based on 

their energy consumption and associated costs [14]. The algorithms work similarly to bacteria 

when they search for food. They learn how to utilize energy more efficiently, handle peak 

demand more effectively, and maintain a comfortable environment for people. The comparisons 

demonstrate that these systems are significantly superior to those that preceded them. There are 

proven long-term advantages to using renewable energy sources and conserving energy.  

This paper suggests that Firefly Optimization-based Clustering for IoT Data 

Aggregation (FOC-DA) might help networks last longer and consume less power. The FOC-

DA algorithm identifies nodes that are near to each other and then selects cluster heads based 

on the brightness of the fireflies (i.e., their fitness) [15]. According to MATLAB 2023b 

simulations, FOC-DA performs better than FA and LEACH in meeting quality-of-service 

standards. ANOVA testing shows that it collects data in IoT sensor networks significantly better 

and consumes less energy.  

The Hybrid Butterfly-BPNN Blockchain-based Classification Framework 

(HBPNNBO) represents a novel approach to analyzing data from smart cities. The Butterfly 

Optimization Algorithm (BOA) and the Backpropagation Neural Network (BPNN) collaborate 

to assist the system in processing information that is not of the same size or shape. The first 

step is to use HADASYNBSID to balance the dataset, and then apply the Hybrid Chicken 

Swarm Genetic Algorithm (HCSGA) to select the best traits. A blockchain system that utilizes 

both AES and CSO encryption ensures data security [16]. When tested HBPNNBO with smart 

city datasets, it was able to categorize items with 94.76% accuracy in only 23.62 ms. This 

indicates that it works well and can be used in real-time to analyze urban data safely. 

This paper led to the creation of the Integrated Data Mining and Machine Learning for 

Energy Optimization (IDMLEO) model, which divides algorithms into three groups: 

supervised, unsupervised, and reinforcement learning. The IDMLEO indicates that supervised 

approaches are typically employed for prediction and benchmarking [17]. At the same time, 

unsupervised methods are utilized to assess performance, and RL is used for control and 

demand flexibility in Building Energy Management (BEM). The article discusses several 
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approaches for integrating DM and ML methodologies into innovative BEM systems. It 

discusses the pros and cons of each and suggests further research that needs to be conducted.  

This paper is about the Firefly-based Optimization for Big Data in Healthcare and 

Engineering (FOBDHE). It discusses how the firefly method can be applied to solve 

optimization problems in healthcare and engineering [18]. The FOBDHE architecture enhances 

patient care, facilitates health trend prediction, and optimizes operations by leveraging big data 

analysis. This method, which was used in MATLAB 2019b, demonstrates how the behavior of 

fireflies in the wild may aid in processing large datasets and improve system performance. It 

also examines ways to integrate the FA with other metaheuristics to enhance optimization in 

various domains.  

This paper demonstrates that the Firefly-based Stochastic Hybrid Energy Planning 

(FSHEP) approach can be utilized to plan hybrid systems that incorporate wind, solar, and 

battery storage. It takes into account the fact that batteries lose power over time and that power 

has to be balanced [19]. The FSHEP demonstrates how load and renewable energy output may 

change by utilizing a firefly algorithm within a scenario-based stochastic optimization 

framework. It keeps operations running and prices down. The suggested method is a fantastic 

way to show how batteries work. Stochastic models are more expensive to plan than 

deterministic models, but they make the systems of islanded microgrids stronger. 

This paper presents a proactive cybersecurity strategy, called Modified Firefly-based 

Network Health Optimization (MFNHO). MFNHO introduces a new health function that uses 

nature-based methods to find nodes that are causing problems early on. It features a genetic 

evolution algorithm and an event management module that collaborate to determine the optimal 

sequence of observations in order of relevance during ongoing network events [20]. The 

simulation findings reveal that the number of questionable nodes decreased by 60 to 80%, yet 

the turnaround time increased by only 1 to 2%. The model works well in many attack settings; 

therefore, it's a smart way to prepare data for better network intrusion detection, which can be 

utilized in various situations. 

3. Methodology 
 This section illustrates the proposed hybrid framework, which combines BE-FPM with 

TIDA. The goal of the integration is to enhance optimization and eliminate noise, thereby 

making pattern mining in smart grid energy data more accurate and trustworthy. The framework 

is designed to operate with time-series data that has numerous dimensions and rapidly identify 

patterns in energy use.  

a. Overview of the Proposed Framework 

 The two primary pieces of the recommended system are BE-FPM for pattern mining 

and TIDA for preprocessing. The first step in identifying consumption differences is to 

convert smart meter data into a format that resembles a thermal image. TIDA utilizes a deep 

autoencoder to remove noise from these images. This preserves essential parts of the 

photographs while reducing their waviness. The BE-FPM approach works on data that has 

been cleansed and changed into binary code. Finding objects based on frequency thresholds 

is simpler when fireflies are more active. People search for patterns that are the same in binary 

space because of this. This plan ensures that innovative grid applications can accurately 

discover patterns and aren't affected by noise.  
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Figure 1: High-Level Architecture of BE-FPM with TIDA Integration 

Figure 1 depicts the end-to-end flow of raw smart grid data through to pattern mining 

for action. Denoted as Phase 1 in the flowchart, the data arrives at the system and undergoes 

preprocessing, which includes cleaning and normalizing the data. Noise-free time-series data 

is transformed into thermal images that contain temporal usage intensities. The transformed 

signals are processed through the TIDA autoencoder, which denoises the images and 

eliminates redundancy. The photos are input through a binary encoding process to create 

activity bits, which are either high (indicating high energy use) or low (indicating low energy 

use). The activity sequences result in high-low binary sequences for input to the BE-FPM 

optimizer. The optimizer utilizes an optimization framework based on swarm intelligence to 

identify frequent energy consumption patterns and then draws inferences based on the 

citations of these patterns. Utilizing this brief cognitive path, the smart grid will enhance its 

functionality in user profiling, forecasting, and demand response applications. 

b. Binary Enhanced Firefly-based Pattern Miner (BE-FPM)  

  

 Binary Encoding of Energy Data: BE-FPM is a binary optimization method that 

searches for patterns in how people utilize energy. This approach allows for adjusting the step 

sizes, adding more light absorption coefficients, and utilizing binary search algorithms, which 

are superior to the original firefly method. The approach uses binary encoding to show how 

energy use fluctuates during peak and off-peak hours—fireflies, which stand for potentially 

possible solutions, flit about in a binary search space. The brightness of the light shows how 

often and how vital the patterns are. The algorithm utilizes intelligent position updates to 

identify the best or nearly optimal patterns quickly. BE-FPM helps deal with datasets that are 

sparse and have a lot of dimensions, which is common in smart grid situations.  

 Firefly Algorithm Enhancements: To begin, the energy consumption data collected 

by smart meters is unreliable and subject to noise. Pattern mining can only work if the data is 

first standardized and then turned into binary sequences. A threshold-based discretization 

method identifies data above a certain level (such as peak hours) as "1" and data below that 

level as "0." This version makes the search space easier to work with and more in keeping 

with the binary nature of the Enhanced Firefly Algorithm. It also speeds up processing while 
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preserving important pattern structures. The binary format helps identify patterns in 

consumption that often occur when you're ready for demand response.  

 
Figure 2: Deep Learning Structure of the TIDA 

 Figure 2 depicts the neural architecture for the TIDA. The input is a 2-dimensional 

thermal representation of temporal energy data, highlighting both daily and hourly 

consumption. The encoder compresses the image using stacked convolutional layers to reduce 

dimensionality and to learn compact representations that are resistant to noise. The latent 

space will capture essential features of the data while losing information about variations 

(noise). The decoder uses upsampling layers and convolutional decoding layers to construct 

the clean version of the image. The model was trained to minimize reconstruction loss (MSE); 

it was able to remove random spikes and deviations while preserving some of the structures 

present in the input data. The result is a smoothed, denoised thermal image, which can now 

be encoded in binary form and mined for patterns. 

c. Thermal Image Denoising Autoencoder (TIDA) 

 The core of the firefly method has been modified to accommodate binary optimization 

problems. One thing that helps is that the light absorption factor varies with each iteration, 

which speeds up convergence. Employ a sigmoid-based transformation to change real-valued 

movement into binary transitions. This lets it work with data that is already in binary form. A 

mutation operator provides diversity, helping escape local optima. These changes make the 

algorithm more reliable and better at identifying key energy trends. The new algorithm strikes 

a better balance between exploration and exploitation, generating high-quality pattern sets that 

reveal how actual users behave in imaginative grid scenarios.  

Image Transformation of Time-Series Data 

  TIDA enhances data quality to facilitate pattern mining. It turns time-series energy 

usage into 2D thermal-like visuals by using intensity as a metric of utilization. There is noise 

in certain pictures sometimes because the measurements weren't accurate or were used in an 

unusual way. Autoencoders how to learn compressed latent representations and eliminate noise, 

enabling them to replicate how people utilize renewable energy. After the encoder removes all 

unnecessary parts, the decoder produces a less noisy image. This method makes it easier to see 

data by focusing on patterns that remain consistent and recur repeatedly. Then, BE-FPM 

changes the denoised output into a binary format that miners may utilize.  

Autoencoder Architecture and Training 

Over time, smart meter data is used to create 2D thermal images that help find patterns 

in space. The rows in the picture reflect the amount of energy used each day, while the columns 

show periods, such as hours. The pixels will become brighter the more power utilize. Since it 

is visual, the autoencoder can find patterns of structural similarity and irregularity over time. 

The thermal graphic illustrates the model's spatial connections and the functioning of cycles. 
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When switch to image format, may also apply powerful deep learning denoising methods that 

don't operate directly on raw time-series vectors and this makes the preprocessing better.  

 
Figure 3: Internal Mechanics of BE-FPM 

The dynamics of the BE-FPM optimization engine are illustrated in Figure 3. Once it 

is fed with binary-encoded consumption data, the system is initialized with a population of 

fireflies, each representing a potential energy usage pattern. Fitness is evaluated through 

frequency and relevancy, respectively. Fireflies then explore the binary space by migrating with 

the help of Hamming distance and a sigmoid transfer function, balancing exploration and 

exploitation efforts. The intensity of light, which the fireflies use to attract their swarm to more 

optimal frequencies (visualizations), presents their pattern quality to explore better 

opportunities within the global problem space. The final output representation is populated with 

the best possible solution patterns retained in memory. The creative evolution of firefly 

algorithms is beneficial in identifying frequent and robust patterns that enhance forecasting and 

optimization of energy behavior in innovative grid environments. 

Algorithm: Binary Enhanced Firefly-based Pattern Miner (BE-FPM) with TIDA 
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𝐵𝐸𝐺𝐼𝑁 

 
1. 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝐷𝑎𝑡𝑎: 
   𝐶𝑜𝑛𝑣𝑒𝑟𝑡 𝑡𝑖𝑚𝑒 − 𝑠𝑒𝑟𝑖𝑒𝑠 𝑑𝑎𝑡𝑎 𝐷 𝑖𝑛𝑡𝑜 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑖𝑚𝑎𝑔𝑒𝑠 
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2. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝐹𝑖𝑟𝑒𝑓𝑙𝑖𝑒𝑠: 
   𝐹𝑂𝑅 𝑖 =  1 𝑡𝑜 𝑁 𝐷𝑂 
       𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑏𝑖𝑛𝑎𝑟𝑦 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑥_𝑖 
       𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓(𝑥_𝑖) 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1 (𝑄𝑁𝐵) 
       𝑆𝑒𝑡 𝑙𝑖𝑔ℎ𝑡 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝐼_𝑖 =  𝑓(𝑥_𝑖) 
   𝐸𝑁𝐷 𝐹𝑂𝑅 
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3. 𝑆𝑒𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡 =  0 

 
4. 𝑅𝐸𝑃𝐸𝐴𝑇 
     𝐹𝑂𝑅 𝑖 =  1 𝑡𝑜 𝑁 𝐷𝑂 
         𝐹𝑂𝑅 𝑗 =  1 𝑡𝑜 𝑁 𝐷𝑂 
             𝐼𝐹 𝐼_𝑗 >  𝐼_𝑖 𝑇𝐻𝐸𝑁 
                 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑟_𝑖𝑗 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑥_𝑖 𝑎𝑛𝑑 𝑥_𝑗 
                 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟: 𝑏𝑒𝑡𝑎_𝑒𝑓𝑓 

=  𝑏𝑒𝑡𝑎 ∗  𝑒𝑥𝑝(−𝑔𝑎𝑚𝑚𝑎 ∗  𝑟_𝑖𝑗^2) 
                 𝑈𝑝𝑑𝑎𝑡𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛: 
                   𝑥_𝑖_𝑛𝑒𝑤 

=  𝑥_𝑖 +  𝑏𝑒𝑡𝑎_𝑒𝑓𝑓 ∗  (𝑥_𝑗 −  𝑥_𝑖)  +  𝑎𝑙𝑝ℎ𝑎 
∗  𝑟𝑎𝑛𝑑𝑜𝑚_𝑏𝑖𝑛𝑎𝑟𝑦_𝑠𝑡𝑒𝑝() 

                 𝐶𝑜𝑛𝑣𝑒𝑟𝑡 𝑥_𝑖_𝑛𝑒𝑤 𝑡𝑜 𝑏𝑖𝑛𝑎𝑟𝑦 (𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎𝑡 0.5) 
                 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓(𝑥_𝑖_𝑛𝑒𝑤) 
                  
                 𝐼𝐹 𝑓(𝑥_𝑖_𝑛𝑒𝑤)  >  𝑓(𝑥_𝑖) 𝑇𝐻𝐸𝑁 
                     𝑥_𝑖 =  𝑥_𝑖_𝑛𝑒𝑤 
                     𝐼_𝑖 =  𝑓(𝑥_𝑖) 
                 𝐸𝐿𝑆𝐸 
                     𝐾𝑒𝑒𝑝 𝑥_𝑖 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑 
                 𝐸𝑁𝐷 𝐼𝐹 
             𝐸𝐿𝑆𝐸 
                 𝐷𝑜 𝑛𝑜𝑡ℎ𝑖𝑛𝑔 
             𝐸𝑁𝐷 𝐼𝐹 
         𝐸𝑁𝐷 𝐹𝑂𝑅 
     𝐸𝑁𝐷 𝐹𝑂𝑅 
      
     𝑡 =  𝑡 +  1 
      
     𝐶ℎ𝑒𝑐𝑘 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 
     𝐼𝐹 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 𝑂𝑅 𝑡 ==  𝑀𝑎𝑥𝐼𝑡𝑒𝑟 𝑇𝐻𝐸𝑁 
         𝐵𝑅𝐸𝐴𝐾 
     𝐸𝑁𝐷 𝐼𝐹 

 
5. 𝑆𝑒𝑙𝑒𝑐𝑡 𝑏𝑒𝑠𝑡 𝑓𝑖𝑟𝑒𝑓𝑙𝑦 𝑥_𝑠𝑡𝑎𝑟 𝑤𝑖𝑡ℎ ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓(𝑥_𝑠𝑡𝑎𝑟) 

 
6. 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 𝑃 𝑓𝑟𝑜𝑚 𝑥_𝑠𝑡𝑎𝑟 

 
7. 𝑅𝑒𝑝𝑜𝑟𝑡 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑚𝑖𝑛𝑖𝑛𝑔 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑄𝑁𝐵 =  𝑓(𝑥_𝑠𝑡𝑎𝑟) 

 
END 

The BE-FPM algorithm 1 mines frequent energy consumption patterns by combining 

a binary firefly optimization with TIDA. It iteratively updates candidate patterns, moving 

toward better solutions based on fitness (pattern accuracy). This approach improves noise 

resilience, speeds convergence, and enhances demand response effectiveness in smart grids. 

4. Experimental Setup 
This section presents the implementation environment and the setup for investigating 

the proposed method. The experiments will utilize real-world smart meter datasets that 

document hourly residential consumption. The BE-FPM with TIDA will be compared to 

existing techniques based on traditional data pattern mining and optimization. This paper focus 
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in the experiments will be to investigate the effectiveness of the mining technique in terms of 

accuracy, robustness to noise, and efficiency runtime. Hardware provided a system with a GPU 

to support improved training times for models and pattern extraction. 

Dataset Description: The dataset used in the study is the Reference Energy 

Disaggregation Data Set (REDD), a high-profile dataset for smart grid energy analysis and the 

most extensive available dataset for this purpose. REDD consists of high-resolution time-series 

electricity consumption data recorded from a variety of homes, providing both aggregate and 

appliance-level power consumption at one-second intervals, allowing for detailed object-level 

pattern discovery [21]. For experimentation, the user selected sample households from REDD, 

pre-processed the data, normalized the data (phase 1), and converted the data into thermal 

images that represented the usage intensity temporally. This structuring of the data, in the form 

of a series of thermal images (a video), provides a way to assess noise reduction, pattern mining 

accuracy, and energy demand prediction in the proposed framework. 

Evaluation Metrics: The effectiveness of the proposed system can be assessed in 

several ways. This paper examine support, confidence, and the F1-score to determine the 

quality of the patterns identified and the accuracy of pattern mining. This compare the original 

photos with the reconstructed ones to evaluate the effectiveness of noise reduction using the 

Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity Index Measure (SSIM).  

  Pattern mining accuracy 𝑄𝑁𝐵 is expressed using equation 1, 

𝑄𝑁𝐵 =

∑ [log2 (
1 + 𝜕𝑗

𝛽

1 + 𝛿𝑗
𝛾) ∗ 𝜏𝑗]

𝑜
𝑗=1

𝑜
  (1) 

Equation 1 explains the pattern mining accuracy by comparing the identified pattern 

intensity with the irrelevant feature density, weighted by the choice factor the precision of 

pattern recognition is measured. 

In this 𝜕𝑗
  is the relevant feature intensity of pattern, 𝛿𝑗

  is the irrelevant feature density 

of pattern, 𝜏𝑗  is the detection certainty coefficient for pattern, 𝛽 is the intensity amplification 

constant, 𝛾 is the noise suppression exponent, and 𝑜 is the total number of patterns detected. 

Noise reduction efficiency 𝑄𝑇𝑂𝑆𝑡𝑙 is expressed using equation 2, 

𝑄𝑇𝑂𝑆𝑡𝑙 = 10 ∗ log10 (
∀𝑚
2

1
𝑁𝑂

∑ ∑ [𝑈(𝑦, 𝑧) − 𝑈̂(𝑦, 𝑧)]
2𝑂

𝑧=1
𝑁
𝑦=1

)  (2) 

Equation 2 explains the noise reduction efficiency uses PSNR to quantify thermal zone 

noise suppression between the denoised reconstruction and the original thermal image. 

In this ∀𝑚
  is the maximum pixel intensity in the thermal image, 𝑈(𝑦, 𝑧) is the original 

thermal energy pixel at coordinates, 𝑈̂(𝑦, 𝑧) is the reconstructed thermal image pixel, and 𝑁,𝑂 

are the dimensions of the thermal image. 

Execution time of BE-FPM 𝐹𝑈𝐶𝐹−𝐺𝑄𝑁 is expressed using equation 3, 

𝐹𝑈𝐶𝐹−𝐺𝑄𝑁 = ∑[𝜕ℎ ∗ (
𝜔ℎ + 𝑌ℎ
𝜃

) ∗ log2(𝜎ℎ + 1)]

𝐻

ℎ=1

  (3) 
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Equation 3 explains the execution time of BE-FPM is determined by inter-firefly 

communication overhead, population size, and iteration complexity. 

In this 𝐻 is the total number of BE-FPM generations, 𝜕ℎ is the number of fireflies in 

generation, 𝜔ℎ  is the fitness evaluation time per firefly, 𝑌ℎ  is the light intensity update time per 

firefly, 𝜃 is the normalization constant, and 𝜎ℎ is the firefly communication ratio in generation. 

Pattern support consistency 𝑄𝑇𝐷 is expressed using equation 4, 

𝑄𝑇𝐷 =
1

|𝑄|
∑

(

 1−
√∑ (𝑡𝑞(𝑢) − 𝑡𝑞̅)

2𝑈
𝑢=1

𝑈 ∗ 𝑡𝑞̅
)

 

𝑞∈𝑄

 (4) 

Equation 4 explains the pattern support consistency, the variation in support over time 

for each pattern. 

In this 𝑄 is the set of discovered patterns, 𝑡𝑞(𝑢) is the support of pattern at the time 

slot, 𝑡𝑞̅ is the mean support of the pattern over intervals, and 𝑈 is the total time interval for 

evaluation. 

Demand response optimization score 𝐸𝑆𝑃𝑇 is expressed using equation 5, 

𝐸𝑆𝑃𝑇 =∑(
𝜏𝑙(𝜋𝑙 − 𝜌𝑙)

𝜑𝑙 +𝑤𝑙
∆
)

𝐿

𝑙=1

  (5) 

Equation 5 explains that the demand response optimization score evaluates shiftable 

load, peak deviation, and price for load mismatch to determine how successfully mining 

patterns assist in demand response. 

In this 𝐿 is the number of DR events, 𝜏𝑙 is the grid responsiveness coefficient for event, 

𝜋𝑙 is the amount of flexible load identified through pattern, 𝜌𝑙 is the standard deviation of 

consumption during event, 𝜑𝑙 is the penalty coefficient for mismatch, 𝑤𝑙
  is the delay penalty 

due to scheduling, and ∆ is the load penalty exponent. 

Convergence rate of EBFO 𝐷𝑆𝐹𝐶𝐹𝑃 is expressed using equation 6, 

𝐷𝑆𝐹𝐶𝐹𝑃 =
1

𝐻
∑(

|𝐺ℎ − 𝐺ℎ−1|

𝐺ℎ−1 + 𝜋
)

𝐻

ℎ=1

  (6) 

Equation 6 explains the convergence rate of EBFO evaluates the rate at which EBFO 

stabilizes by measuring the change in normalized fitness between generations. 

In this 𝐺ℎ is the best fitness value at generation, 𝐺ℎ−1 is the best fitness at the previous 

generation, 𝐻 is the total number of generations, and 𝜋 is a small constant to avoid division by 

zero. 

This also checks to see how well the runtime performs to determine how much 

additional work the machine needs to accomplish. It also verifies the accuracy of the energy 

estimates before and after implementing the proposed method to determine whether demand 

response prediction has improved. These numbers demonstrate the method's effectiveness in 

every aspect.  
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5. Results and Discussion 
  This section presents the results of tests comparing the suggested framework to baseline 

approaches. BE-FPM and TIDA work better together when it comes to discovering energy 

patterns that recur and repeat. They are both more accurate and less impacted by noise. 

Denoising the data makes it easier to understand, which in turn simplifies optimization. Tables 

and graphs indicate that the accuracy, runtime, and pattern relevance have all improved. Another 

real-world application of the framework could be to help manage more sensitive energy. The 

findings support the recommended strategy, which is a strong and helpful approach to analyzing 

smart grid energy statistics. 

Table 1: Pattern Mining Accuracy 

Number of Patterns BE-FPM (%) FSHEP (%) FOC-DA (%) BFA-PR (%) 

50 91.3 85.1 83.5 81.2 

200 87.6 81.7 80.4 78.1 

Insight: BE-FPM achieves the highest accuracy in identifying frequent patterns due 

to binary encoding and swarm-based optimization. 

Table 1 illustrates how effectively the computer can identify patterns in recurring 

events. With 50 patterns, the BE-FPM model was far superior to the others, with 91.3% 

accuracy. FOC-DA earned 83.5%, BFA-PR got 81.2%, and FSHEP got 85.1%. With 200 

patterns, BE-FPM was still 87.6% correct. This is more accurate than FSHEP (81.7%), FOC-

DA (80.4%), and BFA-PR (78.1%), which were all less accurate evaluated using equation 1. 

With BE-FPM's binary encoding and swarm-based search, can find patterns with a lot of 

accuracy across a wide range of volumes. This is ideal for innovative grid applications in the 

real world, where energy usage fluctuates.  

Table 2: Noise Reduction Efficiency (PSNR) 

Noise Level (σ) BE-FPM (dB) FSHEP (dB) FOC-DA (dB) BFA-PR (dB) 

0.1 34.7 31.1 29.8 28.6 

0.4 26.2 22.0 21.1 19.3 

Insight: BE-FPM demonstrates superior denoising capability, maintaining pattern 

recognition accuracy even at high noise levels. 

The PSNR indicates the effectiveness of denoising on data transformed into visual 

representations from time series. The BE-FPM TIDA module achieved 34.7 dB at a noise level 

of σ = 0.1. This is louder than FOC-DA (29.8 dB), FSHEP (31.1 dB), and BFA-PR (28.6 dB). 

When the noise level rose to σ=0.4, BE-FPM still had 26.2 dB, which was better than FSHEP 

(22.0 dB), FOC-DA (21.1 dB), and BFA-PR (19.3 dB) is computed using equation 2. Figure 5 

illustrates that TIDA can eliminate high-frequency errors from translated thermal images. This 

implies that patterns may be detected even when there is a lot of noise, which is frequent in 

real-world smart grid deployments.  

Table 3: Execution Time 

Number of Records BE-FPM FSHEP FOC-DA BFA-PR 

10,000 7.1 8.9 10.2 12.8 

40,000 27.9 33.6 43.8 52.5 

Insight: BE-FPM offers the lowest latency, making it suitable for real-time demand 

response systems. 

Grid systems that operate in real-time need to be able to perform tasks quickly. BE-

FPM was the quickest at processing the data as it grew. Processing 10,000 records took just 7.1 

seconds, which is less time than FSHEP (8.9 seconds), FOC-DA (10.2 seconds), and BFA-PR 

(12.8 seconds). With 40,000 data points, BE-FPM worked well and took 27.9 seconds. It took 
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FSHEP, FOC-DA, and BFA-PR 33.6 seconds, 43.8 seconds, and 52.5 seconds, respectively, as 

shown in Figure 6 made valued using the equation 3. BE-FPM is an excellent tool for energy 

systems that require rapid response and minimal latency, as it seamlessly integrates binary 

firefly logic with autoencoder functionality in a straightforward manner. 

Table 4: Pattern Support Consistency 

Pattern Rank BE-FPM (%) FSHEP (%) FOC-DA (%) BFA-PR (%) 

Top Pattern 94.6 88.9 87.1 85.3 

4th Ranked Pattern 88.2 81.1 79.3 76.8 

Insight: BE-FPM exhibits superior temporal consistency in identifying dominant 

energy usage patterns. 

Support consistency examines how frequently the most prevalent patterns emerge over 

time. The top pattern had 94.6% support in BE-FPM, which was more stable. FSHEP earned 

88.9%, FOC-DA got 87.1%, and BFA-PR got 85.3%. The fourth-ranked pattern in BE-FPM 

nonetheless got 88.2% support, which was more than the 81.1% support for FSHEP, the 79.3% 

support for FOC-DA, and the 76.8% support for BFA-PR shown in table 4 computed using 

equation 4. The model is relatively consistent, meaning it can reliably identify patterns in how 

individuals use energy that are both useful and repeatable. This is crucial for developing 

effective energy policy strategies and for accurately predicting grid analytics.  

Table 5: Demand Response Optimization 

Time of Day BE-FPM (%) FSHEP (%) FOC-DA (%) BFA-PR (%) 

Morning 13.9 10.2 8.6 7.8 

Evening 16.8 12.6 10.4 9.1 

Insight: BE-FPM enables the highest energy savings, offering effective load 

balancing during peak hours. 

Based on mining statistics, this table 5 illustrates the amount of energy saved at various 

times of the day. BE-FPM saved 16.8% more energy than FSHEP (12.6%), FOC-DA (10.4%), 

and BFA-PR (9.1%) during the peak of the evening. In the morning, BE-FPM was in the lead 

again, this time with a 13.9% share. With 10.2%, FSHEP came in second, FOC-DA came in 

third with 8.6%, and BFA-PR came in fourth with 7.8% made computed using equation 5. BE-

FPM's exact demand-response patterning helps maintain a balanced grid, reduces operating 

costs, and utilizes energy in an environmentally friendly manner. This makes it a valuable tool 

for swiftly adapting to changes in demand on the smart grid. 

Table 6: Convergence Rate 

Iterations BE-FPM FSHEP FOC-DA BFA-PR 

10 0.78 0.71 0.68 0.64 

20 0.84 0.75 0.72 0.69 

30 0.89 0.79 0.76 0.72 

40 0.91 0.81 0.78 0.74 

Insight: BE-FPM shows the fastest and most stable convergence, indicating efficient 

exploration exploitation balance during optimization. 

The convergence rate indicates how quickly and accurately an optimization model 

identifies a stable solution. After 10 cycles, the best fitness score achieved by BE-FPM was 

0.78. FSHEP, FOC-DA, and BFA-PR only got 0.71, 0.68, and 0.64, which isn't very excellent. 

By the 40th time, BE-FPM had a score of 0.91, FSHEP had a score of 0.81, FOC-DA had a 

score of 0.78, and BFA-PR had a score of 0.74, as shown in table 6 made evaluated using 

equation 6. This suggests that BE-FPM performs better in striking a balance between 
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exploration and exploitation. This helps it find the optimal patterns more quickly, without 

getting stuck in local minima, which is crucial for real-time applications. 

6. Conclusion 

This paper demonstrates that pattern mining in energy data from smart grids can be 

enhanced by adopting a new hybrid framework, called BE-FPM, in conjunction with a TIDA. 

The suggested solution employed an intelligent encoding mechanism and image-based 

denoising to overcome the high processing cost, noise sensitivity, and poor pattern consistency 

that are significant problems with existing techniques. BE-FPM was superior to other models, 

such as BFA-PR, FOC-DA, and FSHEP, in terms of pattern mining accuracy (91.3%), noise 

resistance (34.7 dB PSNR at Ϝ = 0.1), and convergence speed (0.91 best fitness by iteration 40). 

Furthermore, the technology demonstrated its potential for real-life applications in grid 

optimization, saving a significant amount of energy during demand response events, with a 

16.8% improvement during peak hours at night.  

The BE-FPM design may be even better if it had more information about patterns, such 

as adding multi-modal data like weather, appliance use, and pricing models. This is true even 

if it has previously proven effective. Federated learning may also be utilized to maintain users' 

privacy in distributed energy systems, and adaptive autoencoders could be employed to identify 

issues in real-time. There needs to be lighter versions of models for devices with limited 

resources so that they can be utilized in edge computing settings. Finally, explainable AI (XAI) 

can help both energy operators and end-users better comprehend data-driven grid choices by 

making the system easier to understand. 

REFERENCES   

[1]. Sridharan, S., Satheeshkumar, K., Rajesh, R., & Deivasigamani, S. (2024, June). Clustering Method 

Analysis for Gene Expression Data using Firefly Optimization and Simple K-means Algorithm with 

Machine Learning. In 2024 3rd International Conference on Applied Artificial Intelligence and 

Computing (ICAAIC) (pp. 373-379). IEEE. 

[2]. Karthick, A., Shankar, R., & Dharmaraj, G. (2024). Energy Forecasting of a Building-Integrated 

Photovoltaic System Based on the Deep Learning Dragonfly-Firefly Algorithm. Energy, 308, 132926. 

[3]. Akkara, S., & Selvakumar, I. (2023). Review on optimization techniques used for smart 

grid. Measurement: Sensors, 30, 100918. 

[4]. Ayyakrishnan, M., Lakshmanan, M., S, S., & Sekhar, G. R. (2025). Enhancing Demand Response 

Scheduling in Smart Grids With Integrated Renewable Energy Sources PV and Wind Systems Using 

Hybrid Epistemic Neural Networks—Clouded Leopard Optimization Algorithm. Advanced Theory and 

Simulations, 2500099. 

[5]. Zulfiqar, M., Kamran, M., Rasheed, M. B., Alquthami, T., & Milyani, A. H. (2023). A hybrid framework 

for short-term load forecasting with novel feature engineering and adaptive grasshopper optimization in 

smart grids. Applied Energy, 338, 120829. 

[6]. Balasubramanian, C., & Singh, R. L. R. (2024). IOT based energy management in smart grid under price 

based demand response based on hybrid FHO-RERNN approach. Applied Energy, 361, 122851. 

[7]. Baz, A., Logeshwaran, J., Natarajan, Y., & Patel, S. K. (2024). Deep fuzzy nets approach for energy 

efficiency optimization in smart grids. Applied Soft Computing, 161, 111724. 

[8]. Liceaga-Ortiz-De-La-Peña, J. M., Ruiz-Vanoye, J. A., Xicoténcatl-Pérez, J. M., Díaz-Parra, O., Fuentes-

Penna, A., Barrera-Cámara, R. A., ... & Ortiz-Suárez, L. A. (2025). Advancing Smart Energy: A Review 

for Algorithms Enhancing Power Grid Reliability and Efficiency Through Advanced Quality of Energy 

Services. Energies, 18(12), 3094. 

[9]. Jasim, A. M., Jasim, B. H., Flah, A., Bolshev, V., & Mihet-Popa, L. (2023). A new optimized demand 

management system for smart grid-based residential buildings adopting renewable and storage 

energies. Energy Reports, 9, 4018-4035. 



                      Pattern Mining in Smart Grid Energy Data Using Enhanced Binary Firefly 

Optimization                                                                                                

                                                                                                     Mariam Hassan & Youssef El-Shennawy 

26 
Vol.No : 2 Issue No : 3 Aug 2025 

[10]. Dewangan, F., Abdelaziz, A. Y., & Biswal, M. (2023). Load forecasting models in smart grid 

using smart meter information: a review. Energies, 16(3), 1404. 

[11]. Saravanan, S., Kumar, R. S., & Balakumar, P. (2024). Binary firefly algorithm based 

reconfiguration for maximum power extraction under partial shading and machine learning approach for 

fault detection in solar PV arrays. Applied Soft Computing, 154, 111318. 

[12]. Jain, R., Bakare, Y. B., Pattanaik, B., Alaric, J. S., Balam, S. K., Ayele, T. B., & Nalagandla, R. 

(2023). Optimization of energy consumption in smart homes using firefly algorithm and deep neural 

networks. Sustainable Engineering and Innovation, 5(2), 161-176. 

[13]. Saheed, Y. K. (2022). A binary firefly algorithm based feature selection method on high 

dimensional intrusion detection data. In Illumination of artificial intelligence in cybersecurity and 

forensics (pp. 273-288). Cham: Springer International Publishing. 

[14]. Alatawi, M. N. (2024). Optimization of Home Energy Management Systems in smart cities 

using bacterial foraging algorithm and deep reinforcement learning for Enhanced Renewable Energy 

Integration. International Transactions on Electrical Energy Systems, 2024(1), 2194986. 

[15]. Alshehri, H. S., & Bajaber, F. (2024). A Cluster‐Based Data Aggregation in IoT Sensor 

Networks Using the Firefly Optimization Algorithm. Journal of Computer Networks and 

Communications, 2024(1), 8349653. 

[16]. Natarajan, N., & Venugopal, M. (2025). Hybrid butterfly optimization and back propagation 

neural network for enhanced smart city data classification. Environmental Science and Pollution 

Research, 1-20. 

[17]. Zhou, X., Du, H., Xue, S., & Ma, Z. (2024). Recent advances in data mining and machine 

learning for enhanced building energy management. Energy, 132636. 

[18]. Rahul, K., & Banyal, R. K. (2021). Firefly algorithm: an optimization solution in big data 

processing for the healthcare and engineering sector. International Journal of Speech Technology, 24, 

581-592. 

[19]. Yuan, T., Mu, Y., Wang, T., Liu, Z., & Pirouzi, A. (2024). Using firefly algorithm to optimally 

size a hybrid renewable energy system constrained by battery degradation and considering uncertainties 

of power sources and loads. Heliyon, 10(7). 

[20]. Shandilya, S. K., Choi, B. J., Kumar, A., & Upadhyay, S. (2023). Modified firefly optimization 

algorithm-based IDS for nature-inspired cybersecurity. Processes, 11(3), 715. 

[21]. https://www.kaggle.com/datasets/pawelkauf/redd-part  

 

 

 

 

 

https://www.kaggle.com/datasets/pawelkauf/redd-part

	ABSTRACT
	1. Introduction
	2. Research Methodology
	4. Experimental Setup
	5. Results and Discussion

